update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- wikiann
|
| 7 |
+
metrics:
|
| 8 |
+
- precision
|
| 9 |
+
- recall
|
| 10 |
+
- f1
|
| 11 |
+
- accuracy
|
| 12 |
+
model-index:
|
| 13 |
+
- name: small-e-czech-finetuned-ner-wikiann
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
name: Token Classification
|
| 17 |
+
type: token-classification
|
| 18 |
+
dataset:
|
| 19 |
+
name: wikiann
|
| 20 |
+
type: wikiann
|
| 21 |
+
args: cs
|
| 22 |
+
metrics:
|
| 23 |
+
- name: Precision
|
| 24 |
+
type: precision
|
| 25 |
+
value: 0.8713322894683097
|
| 26 |
+
- name: Recall
|
| 27 |
+
type: recall
|
| 28 |
+
value: 0.8970423324922905
|
| 29 |
+
- name: F1
|
| 30 |
+
type: f1
|
| 31 |
+
value: 0.8840004144075699
|
| 32 |
+
- name: Accuracy
|
| 33 |
+
type: accuracy
|
| 34 |
+
value: 0.9557089381093997
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 38 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 39 |
+
|
| 40 |
+
# small-e-czech-finetuned-ner-wikiann
|
| 41 |
+
|
| 42 |
+
This model is a fine-tuned version of [Seznam/small-e-czech](https://huggingface.co/Seznam/small-e-czech) on the wikiann dataset.
|
| 43 |
+
It achieves the following results on the evaluation set:
|
| 44 |
+
- Loss: 0.2547
|
| 45 |
+
- Precision: 0.8713
|
| 46 |
+
- Recall: 0.8970
|
| 47 |
+
- F1: 0.8840
|
| 48 |
+
- Accuracy: 0.9557
|
| 49 |
+
|
| 50 |
+
## Model description
|
| 51 |
+
|
| 52 |
+
More information needed
|
| 53 |
+
|
| 54 |
+
## Intended uses & limitations
|
| 55 |
+
|
| 56 |
+
More information needed
|
| 57 |
+
|
| 58 |
+
## Training and evaluation data
|
| 59 |
+
|
| 60 |
+
More information needed
|
| 61 |
+
|
| 62 |
+
## Training procedure
|
| 63 |
+
|
| 64 |
+
### Training hyperparameters
|
| 65 |
+
|
| 66 |
+
The following hyperparameters were used during training:
|
| 67 |
+
- learning_rate: 2e-05
|
| 68 |
+
- train_batch_size: 8
|
| 69 |
+
- eval_batch_size: 8
|
| 70 |
+
- seed: 42
|
| 71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 72 |
+
- lr_scheduler_type: linear
|
| 73 |
+
- num_epochs: 20
|
| 74 |
+
|
| 75 |
+
### Training results
|
| 76 |
+
|
| 77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 78 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 79 |
+
| 0.2924 | 1.0 | 2500 | 0.2449 | 0.7686 | 0.8088 | 0.7882 | 0.9320 |
|
| 80 |
+
| 0.2042 | 2.0 | 5000 | 0.2137 | 0.8050 | 0.8398 | 0.8220 | 0.9400 |
|
| 81 |
+
| 0.1699 | 3.0 | 7500 | 0.1912 | 0.8236 | 0.8593 | 0.8411 | 0.9466 |
|
| 82 |
+
| 0.1419 | 4.0 | 10000 | 0.1931 | 0.8349 | 0.8671 | 0.8507 | 0.9488 |
|
| 83 |
+
| 0.1316 | 5.0 | 12500 | 0.1892 | 0.8470 | 0.8776 | 0.8620 | 0.9519 |
|
| 84 |
+
| 0.1042 | 6.0 | 15000 | 0.2058 | 0.8433 | 0.8811 | 0.8618 | 0.9508 |
|
| 85 |
+
| 0.0884 | 7.0 | 17500 | 0.2020 | 0.8602 | 0.8849 | 0.8724 | 0.9531 |
|
| 86 |
+
| 0.0902 | 8.0 | 20000 | 0.2118 | 0.8551 | 0.8837 | 0.8692 | 0.9528 |
|
| 87 |
+
| 0.0669 | 9.0 | 22500 | 0.2171 | 0.8634 | 0.8906 | 0.8768 | 0.9550 |
|
| 88 |
+
| 0.0529 | 10.0 | 25000 | 0.2228 | 0.8638 | 0.8912 | 0.8773 | 0.9545 |
|
| 89 |
+
| 0.0613 | 11.0 | 27500 | 0.2293 | 0.8626 | 0.8898 | 0.8760 | 0.9544 |
|
| 90 |
+
| 0.0549 | 12.0 | 30000 | 0.2276 | 0.8694 | 0.8958 | 0.8824 | 0.9554 |
|
| 91 |
+
| 0.0516 | 13.0 | 32500 | 0.2384 | 0.8717 | 0.8940 | 0.8827 | 0.9552 |
|
| 92 |
+
| 0.0412 | 14.0 | 35000 | 0.2443 | 0.8701 | 0.8931 | 0.8815 | 0.9554 |
|
| 93 |
+
| 0.0345 | 15.0 | 37500 | 0.2464 | 0.8723 | 0.8958 | 0.8839 | 0.9557 |
|
| 94 |
+
| 0.0412 | 16.0 | 40000 | 0.2477 | 0.8705 | 0.8948 | 0.8825 | 0.9552 |
|
| 95 |
+
| 0.0363 | 17.0 | 42500 | 0.2525 | 0.8742 | 0.8973 | 0.8856 | 0.9559 |
|
| 96 |
+
| 0.0341 | 18.0 | 45000 | 0.2529 | 0.8727 | 0.8962 | 0.8843 | 0.9561 |
|
| 97 |
+
| 0.0194 | 19.0 | 47500 | 0.2533 | 0.8699 | 0.8966 | 0.8830 | 0.9557 |
|
| 98 |
+
| 0.0247 | 20.0 | 50000 | 0.2547 | 0.8713 | 0.8970 | 0.8840 | 0.9557 |
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
### Framework versions
|
| 102 |
+
|
| 103 |
+
- Transformers 4.17.0
|
| 104 |
+
- Pytorch 1.10.0+cu111
|
| 105 |
+
- Datasets 1.18.4
|
| 106 |
+
- Tokenizers 0.11.6
|