Spaces:
Sleeping
Sleeping
Nigel Thomas
commited on
Commit
Β·
e38a4a7
1
Parent(s):
1cda6e3
Updated code
Browse files
app.py
CHANGED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import re
|
| 5 |
+
import tempfile
|
| 6 |
+
import torch
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from langchain_community.document_loaders import PDFPlumberLoader
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain_community.llms import Ollama
|
| 13 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 14 |
+
from sentence_transformers import CrossEncoder
|
| 15 |
+
from transformers import pipeline
|
| 16 |
+
from langchain_core.prompts import PromptTemplate
|
| 17 |
+
from langchain.chains import LLMChain
|
| 18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 19 |
+
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
| 20 |
+
from huggingface_hub import login
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Load the model and tokenizer
|
| 24 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 25 |
+
|
| 26 |
+
# Initialize classifier once for input guardrail
|
| 27 |
+
classifier = pipeline("zero-shot-classification",
|
| 28 |
+
model="typeform/distilbert-base-uncased-mnli")
|
| 29 |
+
|
| 30 |
+
# Streamlit UI Configuration
|
| 31 |
+
st.set_page_config(page_title="Multi-File Financial Analyzer", layout="wide")
|
| 32 |
+
st.title("π Financial Analysis System")
|
| 33 |
+
|
| 34 |
+
# Sidebar Controls
|
| 35 |
+
with st.sidebar:
|
| 36 |
+
st.header("Configuration Panel")
|
| 37 |
+
model_choice = st.selectbox("LLM Model",
|
| 38 |
+
[model_name],
|
| 39 |
+
help="Choose the core analysis engine")
|
| 40 |
+
chunk_size = st.slider("Document Chunk Size", 500, 2000, 1000)
|
| 41 |
+
rerank_threshold = st.slider("Re-ranking Threshold", 0.0, 1.0, 0.1)
|
| 42 |
+
|
| 43 |
+
# File Upload Handling for multiple files
|
| 44 |
+
uploaded_files = st.file_uploader("Upload Financial PDFs",
|
| 45 |
+
type="pdf",
|
| 46 |
+
accept_multiple_files=True)
|
| 47 |
+
|
| 48 |
+
if uploaded_files:
|
| 49 |
+
all_docs = []
|
| 50 |
+
with st.spinner("Processing Multiple Financial Documents..."):
|
| 51 |
+
for uploaded_file in uploaded_files:
|
| 52 |
+
# Create temporary file for each PDF
|
| 53 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 54 |
+
tmp.write(uploaded_file.getvalue())
|
| 55 |
+
tmp_path = tmp.name
|
| 56 |
+
|
| 57 |
+
# Load and process each document
|
| 58 |
+
loader = PDFPlumberLoader(tmp_path)
|
| 59 |
+
docs = loader.load()
|
| 60 |
+
all_docs.extend(docs)
|
| 61 |
+
|
| 62 |
+
# Combined Document Processing
|
| 63 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 64 |
+
chunk_size=chunk_size,
|
| 65 |
+
chunk_overlap=200,
|
| 66 |
+
separators=["\n\n", "\n", "\. ", "! ", "? ", " ", ""]
|
| 67 |
+
)
|
| 68 |
+
documents = text_splitter.split_documents(all_docs)
|
| 69 |
+
|
| 70 |
+
# Hybrid Retrieval Setup for combined documents
|
| 71 |
+
embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 72 |
+
vector_store = FAISS.from_documents(documents, embedder)
|
| 73 |
+
bm25_retriever = BM25Retriever.from_documents(documents)
|
| 74 |
+
bm25_retriever.k = 5
|
| 75 |
+
faiss_retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
| 76 |
+
ensemble_retriever = EnsembleRetriever(
|
| 77 |
+
retrievers=[bm25_retriever, faiss_retriever],
|
| 78 |
+
weights=[0.4, 0.6]
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Re-ranking Model
|
| 82 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 83 |
+
|
| 84 |
+
# Financial Analysis LLM Configuration
|
| 85 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 86 |
+
model_name,
|
| 87 |
+
trust_remote_code=True,
|
| 88 |
+
padding_side="left" # Important for some models
|
| 89 |
+
)
|
| 90 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
trust_remote_code=True,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Create pipeline with generation parameters
|
| 96 |
+
pipeline_llm = pipeline(
|
| 97 |
+
"text-generation",
|
| 98 |
+
model=model,
|
| 99 |
+
tokenizer=tokenizer,
|
| 100 |
+
max_new_tokens=1024,
|
| 101 |
+
temperature=0.3,
|
| 102 |
+
top_p=0.95,
|
| 103 |
+
repetition_penalty=1.15,
|
| 104 |
+
return_full_text=False # Important for response formatting
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
llm = HuggingFacePipeline(pipeline=pipeline_llm)
|
| 108 |
+
|
| 109 |
+
# Update prompt template
|
| 110 |
+
PROMPT_TEMPLATE = """
|
| 111 |
+
<|system|>
|
| 112 |
+
You are a senior financial analyst. Analyze these financial reports:
|
| 113 |
+
1. Compare key metrics between documents
|
| 114 |
+
2. Identify trends across reporting periods
|
| 115 |
+
3. Highlight differences/similarities
|
| 116 |
+
4. Provide risk assessment
|
| 117 |
+
5. Offer recommendations
|
| 118 |
+
|
| 119 |
+
Format response with clear sections and bullet points. Keep under 300 words.
|
| 120 |
+
|
| 121 |
+
Context: {context}
|
| 122 |
+
Question: {question}
|
| 123 |
+
<|assistant|>
|
| 124 |
+
"""
|
| 125 |
+
# chat prompt template
|
| 126 |
+
qa_prompt = PromptTemplate(
|
| 127 |
+
template=PROMPT_TEMPLATE,
|
| 128 |
+
input_variables=["context", "question"]
|
| 129 |
+
)
|
| 130 |
+
llm_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
| 131 |
+
|
| 132 |
+
# Interactive Q&A Interface
|
| 133 |
+
st.header("π Cross-Document Financial Inquiry")
|
| 134 |
+
|
| 135 |
+
# Suggested Comparative Questions
|
| 136 |
+
comparative_questions = [
|
| 137 |
+
"Analyze changes in debt structure across both reports",
|
| 138 |
+
"Show expense ratio differences between the two years",
|
| 139 |
+
"What are the main liquidity changes across both periods?",
|
| 140 |
+
]
|
| 141 |
+
user_query = st.selectbox("Sample Financial Questions",
|
| 142 |
+
[""] + comparative_questions)
|
| 143 |
+
user_input = st.text_input("Or enter custom financial query:",
|
| 144 |
+
value=user_query)
|
| 145 |
+
|
| 146 |
+
if user_input:
|
| 147 |
+
# Input Validation Guardrail
|
| 148 |
+
classification = classifier(user_input,
|
| 149 |
+
["financial", "other"],
|
| 150 |
+
multi_label=False)
|
| 151 |
+
print(f"-- Guard rail check is completed for query with prob:{classification['scores'][0]}")
|
| 152 |
+
|
| 153 |
+
if classification['scores'][0] < 0.7:
|
| 154 |
+
st.error("Query not related to financial. Ask about financial related queries")
|
| 155 |
+
st.stop()
|
| 156 |
+
|
| 157 |
+
with st.spinner("Performing Cross-Document Analysis..."):
|
| 158 |
+
# Hybrid Document Retrieval
|
| 159 |
+
initial_docs = ensemble_retriever.get_relevant_documents(user_input)
|
| 160 |
+
|
| 161 |
+
# Context Re-ranking
|
| 162 |
+
doc_pairs = [(user_input, doc.page_content) for doc in initial_docs]
|
| 163 |
+
rerank_scores = cross_encoder.predict(doc_pairs)
|
| 164 |
+
sorted_indices = np.argsort(rerank_scores)[::-1]
|
| 165 |
+
ranked_docs = [initial_docs[i] for i in sorted_indices]
|
| 166 |
+
filtered_docs = [d for d, s in zip(ranked_docs, rerank_scores)
|
| 167 |
+
if s > rerank_threshold][:7]
|
| 168 |
+
print(f"-- Retrieved chunks:{filtered_docs}")
|
| 169 |
+
|
| 170 |
+
# Confidence Calculation
|
| 171 |
+
confidence_score = np.mean(rerank_scores[sorted_indices][:3]) * 100
|
| 172 |
+
confidence_score = min(100, max(0, round(confidence_score, 1)))
|
| 173 |
+
|
| 174 |
+
# Response Generation
|
| 175 |
+
context = "\n".join([doc.page_content for doc in filtered_docs])
|
| 176 |
+
print(f"-- Retrieved context:{context}")
|
| 177 |
+
|
| 178 |
+
analysis = llm_chain.run(
|
| 179 |
+
context=context,
|
| 180 |
+
question=user_input
|
| 181 |
+
)
|
| 182 |
+
print(f"Analysis result:{analysis}")
|
| 183 |
+
|
| 184 |
+
# Response Cleaning
|
| 185 |
+
clean_analysis = re.sub(r"<think>|</think>|\n{3,}", "", analysis)
|
| 186 |
+
clean_analysis = re.sub(r'(\d)([A-Za-z])', r'\1 \2', clean_analysis)
|
| 187 |
+
clean_analysis = re.sub(r'(\d{1,3})(\d{3})', r'\1,\2', clean_analysis)
|
| 188 |
+
|
| 189 |
+
# Input Display
|
| 190 |
+
st.subheader("User Query+Context to the LLM")
|
| 191 |
+
st.markdown(f"```\n{qa_prompt.format(context=context, question=user_input)}\n```")
|
| 192 |
+
|
| 193 |
+
# Results Display
|
| 194 |
+
st.subheader("Integrated Financial Analysis")
|
| 195 |
+
st.markdown(f"```\n{clean_analysis}\n```")
|
| 196 |
+
st.progress(int(confidence_score)/100)
|
| 197 |
+
st.caption(f"Analysis Confidence: {confidence_score}%")
|
| 198 |
+
|
| 199 |
+
# Export Functionality
|
| 200 |
+
if st.button("Generate Financial Analysis Report"):
|
| 201 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 202 |
+
export_content = f"COMPARATIVE QUERY: {user_input}\n\nANALYSIS:\n{clean_analysis}"
|
| 203 |
+
st.download_button("Download Full Report", export_content,
|
| 204 |
+
file_name=f"Comparative_Analysis_{timestamp}.txt",
|
| 205 |
+
mime="text/plain")
|
| 206 |
+
|
| 207 |
+
else:
|
| 208 |
+
st.info("Please upload PDF financial reports to begin financial analysis")
|