File size: 14,022 Bytes
f205f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# �� Copilot �ͦ�
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple
import json
from transformers import pipeline, AutoTokenizer, AutoModel
from datasets import Dataset
import re

class RentalDataAnalyzer:
    """���θ�Ƥ��R��"""
    
    def __init__(self, data_path: str = None):
        """

        ��l�Ƥ��R��

        

        Args:

            data_path: ����ɮ׸��|

        """
        self.data_path = data_path
        self.df = None
        self.analysis_results = {}
        
        # ��l��Hugging Face�ҫ��Ω��r���R
        self.sentiment_analyzer = None
        self.text_classifier = None
        
    def load_data(self, data_path: str = None) -> pd.DataFrame:
        """���J���"""
        if data_path:
            self.data_path = data_path
            
        try:
            if self.data_path.endswith('.json'):
                with open(self.data_path, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                self.df = pd.DataFrame(data)
            elif self.data_path.endswith('.csv'):
                self.df = pd.read_csv(self.data_path, encoding='utf-8-sig')
            else:
                raise ValueError("���䴩���ɮ׮榡")
                
            print(f"���\���J {len(self.df)} �����")
            return self.df
            
        except Exception as e:
            print(f"���J��Ʈɵo�Ϳ��~: {e}")
            return None
    
    def clean_data(self) -> pd.DataFrame:
        """�M�~���"""
        if self.df is None:
            print("�����J���")
            return None
            
        print("�}�l�M�~���...")
        
        # �������Ƹ��
        original_count = len(self.df)
        self.df = self.df.drop_duplicates(subset=['title', 'address', 'price'])
        print(f"���� {original_count - len(self.df)} �����Ƹ��")
        
        # �M�z�������
        self.df['price'] = pd.to_numeric(self.df['price'], errors='coerce')
        self.df = self.df[self.df['price'] > 0]  # �����L���
        
        # �M�z�W�Ƹ��
        self.df['area'] = pd.to_numeric(self.df['area'], errors='coerce')
        
        # �p��C�W����
        self.df['price_per_ping'] = self.df.apply(
            lambda row: row['price'] / row['area'] if row['area'] > 0 else np.nan, 
            axis=1
        )
        
        # �������`�ȡ]�ϥ�IQR��k�^
        self.df = self.remove_outliers(self.df, 'price')
        
        print(f"�M�~��Ѿl {len(self.df)} �����ĸ��")
        return self.df
    
    def remove_outliers(self, df: pd.DataFrame, column: str) -> pd.DataFrame:
        """�������`��"""
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        
        outliers_count = len(df[(df[column] < lower_bound) | (df[column] > upper_bound)])
        print(f"���� {outliers_count} �� {column} ���`��")
        
        return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
    
    def basic_statistics(self) -> Dict:
        """�򥻲έp���R"""
        if self.df is None or len(self.df) == 0:
            return {}
            
        stats = {
            'total_properties': len(self.df),
            'price_stats': {
                'mean': round(self.df['price'].mean(), 2),
                'median': round(self.df['price'].median(), 2),
                'std': round(self.df['price'].std(), 2),
                'min': self.df['price'].min(),
                'max': self.df['price'].max(),
                'q25': round(self.df['price'].quantile(0.25), 2),
                'q75': round(self.df['price'].quantile(0.75), 2)
            },
            'area_stats': {
                'mean': round(self.df['area'].mean(), 2),
                'median': round(self.df['area'].median(), 2),
                'min': self.df['area'].min(),
                'max': self.df['area'].max()
            } if not self.df['area'].isna().all() else {},
            'price_per_ping_stats': {
                'mean': round(self.df['price_per_ping'].mean(), 2),
                'median': round(self.df['price_per_ping'].median(), 2),
                'min': round(self.df['price_per_ping'].min(), 2),
                'max': round(self.df['price_per_ping'].max(), 2)
            } if not self.df['price_per_ping'].isna().all() else {}
        }
        
        self.analysis_results['basic_stats'] = stats
        return stats
    
    def price_distribution_analysis(self) -> Dict:
        """�����������R"""
        if self.df is None or len(self.df) == 0:
            return {}
            
        # �w�q�����϶�
        price_bins = [0, 15000, 20000, 25000, 30000, 40000, float('inf')]
        price_labels = ['<15K', '15-20K', '20-25K', '25-30K', '30-40K', '>40K']
        
        self.df['price_range'] = pd.cut(self.df['price'], bins=price_bins, labels=price_labels, right=False)
        
        distribution = self.df['price_range'].value_counts().sort_index()
        
        distribution_dict = {
            'ranges': distribution.index.tolist(),
            'counts': distribution.values.tolist(),
            'percentages': (distribution / len(self.df) * 100).round(2).tolist()
        }
        
        self.analysis_results['price_distribution'] = distribution_dict
        return distribution_dict
    
    def area_analysis(self) -> Dict:
        """�W�Ƥ��R"""
        if self.df is None or len(self.df) == 0 or self.df['area'].isna().all():
            return {}
            
        # �w�q�W�ư϶�
        area_bins = [0, 20, 30, 40, 50, float('inf')]
        area_labels = ['<20�W', '20-30�W', '30-40�W', '40-50�W', '>50�W']
        
        self.df['area_range'] = pd.cut(self.df['area'], bins=area_bins, labels=area_labels, right=False)
        
        area_distribution = self.df['area_range'].value_counts().sort_index()
        
        area_dict = {
            'ranges': area_distribution.index.tolist(),
            'counts': area_distribution.values.tolist(),
            'percentages': (area_distribution / len(self.df) * 100).round(2).tolist()
        }
        
        self.analysis_results['area_analysis'] = area_dict
        return area_dict
    
    def setup_huggingface_models(self):
        """�]�mHugging Face�ҫ�"""
        try:
            print("���JHugging Face�ҫ�...")
            
            # ���J���屡�P���R�ҫ�
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="ckiplab/bert-base-chinese-ws",
                return_all_scores=True
            )
            
            print("Hugging Face�ҫ����J����")
        except Exception as e:
            print(f"���JHugging Face�ҫ��ɵo�Ϳ��~: {e}")
    
    def analyze_descriptions(self) -> Dict:
        """���R����y�z��r"""
        if self.df is None or 'raw_info' not in self.df.columns:
            return {}
            
        descriptions = self.df['raw_info'].dropna().tolist()
        
        if not descriptions:
            return {}
            
        # ����r���R
        keywords_analysis = self.analyze_keywords(descriptions)
        
        analysis_result = {
            'keywords_frequency': keywords_analysis,
            'total_descriptions': len(descriptions)
        }
        
        self.analysis_results['description_analysis'] = analysis_result
        return analysis_result
    
    def analyze_keywords(self, descriptions: List[str]) -> Dict:
        """���R����r�W�v"""
        # �w�q�Ыά�������r
        keywords = [
            '�񱶹B', '�񨮯�', '�q��', '���x', '������', '�޲z�O',
            '�ĥ�', '�q��', '�w�R', '�K�Q', '�ͬ�����', '�ǰ�',
            '���s', '���C', '�a��', '�a�q', '�N��', '�~���'
        ]
        
        keyword_counts = {keyword: 0 for keyword in keywords}
        
        for desc in descriptions:
            for keyword in keywords:
                if keyword in desc:
                    keyword_counts[keyword] += 1
        
        # �ƧǨè��e10��
        sorted_keywords = dict(sorted(keyword_counts.items(), key=lambda x: x[1], reverse=True)[:10])
        
        return sorted_keywords
    
    def correlation_analysis(self) -> Dict:
        """�����ʤ��R"""
        if self.df is None or len(self.df) == 0:
            return {}
            
        numeric_columns = ['price', 'area', 'price_per_ping']
        available_columns = [col for col in numeric_columns if col in self.df.columns and not self.df[col].isna().all()]
        
        if len(available_columns) < 2:
            return {}
            
        correlation_matrix = self.df[available_columns].corr()
        
        correlation_dict = {}
        for i, col1 in enumerate(available_columns):
            for j, col2 in enumerate(available_columns):
                if i < j:  # �קK����
                    correlation_dict[f"{col1}_vs_{col2}"] = round(correlation_matrix.loc[col1, col2], 3)
        
        self.analysis_results['correlation'] = correlation_dict
        return correlation_dict
    
    def generate_insights(self) -> List[str]:
        """�ͦ����R�}��"""
        insights = []
        
        if 'basic_stats' in self.analysis_results:
            stats = self.analysis_results['basic_stats']
            insights.append(f"�@��� {stats['total_properties']} ���ŦX���󪺯��Ϊ���")
            insights.append(f"���������� {stats['price_stats']['mean']:,} ��")
            insights.append(f"��������Ƭ� {stats['price_stats']['median']:,} ��")
            
            if stats['price_stats']['mean'] > stats['price_stats']['median']:
                insights.append("���������V�k���סA�s�b����������԰�������")
            
        if 'price_distribution' in self.analysis_results:
            dist = self.analysis_results['price_distribution']
            max_range_idx = dist['percentages'].index(max(dist['percentages']))
            most_common_range = dist['ranges'][max_range_idx]
            percentage = dist['percentages'][max_range_idx]
            insights.append(f"�̱`���������϶��O {most_common_range}�A�� {percentage}%")
        
        if 'area_analysis' in self.analysis_results:
            area = self.analysis_results['area_analysis']
            if area:
                max_area_idx = area['percentages'].index(max(area['percentages']))
                most_common_area = area['ranges'][max_area_idx]
                insights.append(f"�̱`�����W�ư϶��O {most_common_area}")
        
        return insights
    
    def run_full_analysis(self) -> Dict:
        """���槹����R"""
        print("�}�l���槹����R...")
        
        # �򥻲έp
        basic_stats = self.basic_statistics()
        print("? �򥻲έp���R����")
        
        # �����������R
        price_dist = self.price_distribution_analysis()
        print("? �����������R����")
        
        # �W�Ƥ��R
        area_analysis = self.area_analysis()
        print("? �W�Ƥ��R����")
        
        # �y�z��r���R
        desc_analysis = self.analyze_descriptions()
        print("? �y�z��r���R����")
        
        # �����ʤ��R
        correlation = self.correlation_analysis()
        print("? �����ʤ��R����")
        
        # �ͦ��}��
        insights = self.generate_insights()
        print("? �}��ͦ�����")
        
        self.analysis_results['insights'] = insights
        
        return self.analysis_results
    
    def save_analysis_results(self, filename: str = "analysis_results.json"):
        """�x�s���R���G"""
        try:
            with open(f"output/{filename}", 'w', encoding='utf-8') as f:
                json.dump(self.analysis_results, f, ensure_ascii=False, indent=2)
            print(f"���R���G�w�x�s�� output/{filename}")
        except Exception as e:
            print(f"�x�s���R���G�ɵo�Ϳ��~: {e}")
    
    def print_summary(self):
        """�L�X���R�K�n"""
        if not self.analysis_results:
            print("�S�����R���G�i���")
            return
            
        print("\n" + "="*50)
        print("���������s�ϯ��Υ������R���i")
        print("="*50)
        
        if 'insights' in self.analysis_results:
            print("\n? ���n�}��:")
            for i, insight in enumerate(self.analysis_results['insights'], 1):
                print(f"{i}. {insight}")
        
        if 'basic_stats' in self.analysis_results:
            stats = self.analysis_results['basic_stats']
            print(f"\n? �����έp:")
            print(f"   ��������: {stats['price_stats']['mean']:,} ��")
            print(f"   �����: {stats['price_stats']['median']:,} ��")
            print(f"   �̧C����: {stats['price_stats']['min']:,} ��")
            print(f"   �̰�����: {stats['price_stats']['max']:,} ��")
            print(f"   �зǮt: {stats['price_stats']['std']:,} ��")
        
        if 'price_distribution' in self.analysis_results:
            print(f"\n? ��������:")
            dist = self.analysis_results['price_distribution']
            for range_name, count, percentage in zip(dist['ranges'], dist['counts'], dist['percentages']):
                print(f"   {range_name}: {count} �� ({percentage}%)")
        
        print("\n" + "="*50)

if __name__ == "__main__":
    # ���դ��R��
    analyzer = RentalDataAnalyzer()
    
    # ���J���
    df = analyzer.load_data("output/rental_data.csv")
    
    if df is not None:
        # �M�~���
        analyzer.clean_data()
        
        # ���槹����R
        results = analyzer.run_full_analysis()
        
        # �x�s���G
        analyzer.save_analysis_results()
        
        # ��ܺK�n
        analyzer.print_summary()