File size: 10,812 Bytes
e538e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d41f0
e538e84
 
f3d41f0
 
e538e84
 
 
f3d41f0
 
 
 
 
 
e538e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# �� Copilot �ͦ�
import pandas as pd
import numpy as np
from typing import Dict, List
import json
from transformers import pipeline
from datasets import Dataset

class RentalAnalyzer:
    """���θ�Ƥ��R�� - Hugging Face Spaces����"""
    
    def __init__(self, df: pd.DataFrame, use_hf_models: bool = True):
        """

        ��l�Ƥ��R��

        

        Args:

            df: ����DataFrame

            use_hf_models: �O�_�ϥ�Hugging Face�ҫ�

        """
        self.df = df.copy()
        self.use_hf_models = use_hf_models
        self.analysis_results = {}
        
        # ��l��Hugging Face�ҫ�
        self.sentiment_analyzer = None
        if use_hf_models:
            try:
                # �ϥθ��p���^�屡�P���R�ҫ��A�קK���J���D
                self.sentiment_analyzer = pipeline(
                    "sentiment-analysis",
                    model="cardiffnlp/twitter-roberta-base-sentiment-latest",
                    return_all_scores=False
                )
            except Exception as e:
                print(f"Warning: Could not load Hugging Face model: {e}")
                # ���ըϥιw�]�ҫ�
                try:
                    self.sentiment_analyzer = pipeline("sentiment-analysis")
                except Exception as e2:
                    print(f"Warning: Could not load any sentiment model: {e2}")
                    self.use_hf_models = False
    
    def clean_data(self) -> pd.DataFrame:
        """�M�~���"""
        
        # �������Ƹ��
        original_count = len(self.df)
        self.df = self.df.drop_duplicates(subset=['title', 'address', 'price'])
        
        # �B�z�������
        self.df['price'] = pd.to_numeric(self.df['price'], errors='coerce')
        self.df = self.df[self.df['price'] > 0]
        
        # �B�z�W�Ƹ��
        self.df['area'] = pd.to_numeric(self.df['area'], errors='coerce')
        self.df = self.df[self.df['area'] > 0]
        
        # �p��C�W����
        self.df['price_per_ping'] = self.df['price'] / self.df['area']
        
        # �������`��
        self.df = self.remove_outliers(self.df, 'price')
        
        # �K�[�������
        self.add_categorical_columns()
        
        return self.df
    
    def remove_outliers(self, df: pd.DataFrame, column: str) -> pd.DataFrame:
        """�������`�ȡ]�ϥ�IQR��k�^"""
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        
        return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
    
    def add_categorical_columns(self):
        """�K�[�������"""
        
        # �����϶�
        self.df['price_range'] = pd.cut(
            self.df['price'], 
            bins=[0, 20000, 25000, 30000, 35000, float('inf')],
            labels=['<20K', '20-25K', '25-30K', '30-35K', '>35K']
        )
        
        # �W�ư϶�
        self.df['area_range'] = pd.cut(
            self.df['area'],
            bins=[0, 25, 30, 35, 40, float('inf')],
            labels=['<25�W', '25-30�W', '30-35�W', '35-40�W', '>40�W']
        )
    
    def basic_statistics(self) -> Dict:
        """�򥻲έp���R"""
        
        stats = {
            'total_properties': len(self.df),
            'price_stats': {
                'mean': round(self.df['price'].mean(), 2),
                'median': round(self.df['price'].median(), 2),
                'std': round(self.df['price'].std(), 2),
                'min': int(self.df['price'].min()),
                'max': int(self.df['price'].max()),
                'q25': round(self.df['price'].quantile(0.25), 2),
                'q75': round(self.df['price'].quantile(0.75), 2)
            },
            'area_stats': {
                'mean': round(self.df['area'].mean(), 2),
                'median': round(self.df['area'].median(), 2),
                'min': round(self.df['area'].min(), 1),
                'max': round(self.df['area'].max(), 1)
            },
            'price_per_ping_stats': {
                'mean': round(self.df['price_per_ping'].mean(), 2),
                'median': round(self.df['price_per_ping'].median(), 2),
                'min': round(self.df['price_per_ping'].min(), 2),
                'max': round(self.df['price_per_ping'].max(), 2)
            }
        }
        
        return stats
    
    def price_distribution_analysis(self) -> Dict:
        """�����������R"""
        
        distribution = self.df['price_range'].value_counts().sort_index()
        return distribution.to_dict()
    
    def area_distribution_analysis(self) -> Dict:
        """�W�Ƥ������R"""
        
        distribution = self.df['area_range'].value_counts().sort_index()
        return distribution.to_dict()
    
    def keywords_analysis(self) -> Dict:
        """����r���R"""
        
        # �w�q�Ыά�������r
        keywords = [
            '�񱶹B', '�񨮯�', '�q��', '���x', '������', '�޲z�O',
            '�ĥ�', '�q��', '�w�R', '�K�Q', '�ͬ�����', '�ǰ�',
            '���s', '���C', '�a��', '�a�q', '�N��', '�~���',
            '���N�]', '�R�e', '��G', '��l�W', '���s', '�����P'
        ]
        
        keyword_counts = {keyword: 0 for keyword in keywords}
        
        descriptions = self.df['raw_info'].dropna().tolist()
        
        for desc in descriptions:
            for keyword in keywords:
                if keyword in str(desc):
                    keyword_counts[keyword] += 1
        
        # �ƧǨè��e10��
        sorted_keywords = dict(
            sorted(keyword_counts.items(), key=lambda x: x[1], reverse=True)[:10]
        )
        
        return sorted_keywords
    
    def huggingface_analysis(self) -> Dict:
        """�ϥ�Hugging Face�ҫ��i����R"""
        
        if not self.use_hf_models or self.sentiment_analyzer is None:
            return {}
        
        try:
            descriptions = self.df['raw_info'].dropna().tolist()[:10]  # ���e10���קK�W��
            
            if not descriptions:
                return {}
            
            # ���P���R
            sentiments = []
            for desc in descriptions:
                try:
                    result = self.sentiment_analyzer(desc[:100])  # �������
                    sentiments.append(result[0]['label'] if result else 'NEUTRAL')
                except:
                    sentiments.append('NEUTRAL')
            
            # �έp���P����
            sentiment_counts = {}
            for sentiment in sentiments:
                sentiment_counts[sentiment] = sentiment_counts.get(sentiment, 0) + 1
            
            # �Ы�Dataset
            hf_dataset = Dataset.from_dict({
                'text': descriptions,
                'price': self.df['price'].head(len(descriptions)).tolist(),
                'area': self.df['area'].head(len(descriptions)).tolist(),
                'sentiment': sentiments
            })
            
            return {
                'sentiment_distribution': sentiment_counts,
                'dataset_size': len(hf_dataset),
                'sample_analysis': True
            }
            
        except Exception as e:
            print(f"Hugging Face analysis error: {e}")
            return {}
    
    def correlation_analysis(self) -> Dict:
        """�����ʤ��R"""
        
        numeric_columns = ['price', 'area', 'price_per_ping']
        available_columns = [
            col for col in numeric_columns 
            if col in self.df.columns and not self.df[col].isna().all()
        ]
        
        if len(available_columns) < 2:
            return {}
        
        correlation_matrix = self.df[available_columns].corr()
        
        correlations = {}
        for i, col1 in enumerate(available_columns):
            for j, col2 in enumerate(available_columns):
                if i < j:  # �קK����
                    correlations[f"{col1}_vs_{col2}"] = round(
                        correlation_matrix.loc[col1, col2], 3
                    )
        
        return correlations
    
    def generate_insights(self) -> List[str]:
        """�ͦ����R�}��"""
        
        insights = []
        
        # �򥻲έp�}��
        if 'basic_stats' in self.analysis_results:
            stats = self.analysis_results['basic_stats']
            insights.append(f"�@��� {stats['total_properties']} ���ŦX���󪺯��Ϊ���")
            insights.append(f"���������� {stats['price_stats']['mean']:,} ��")
            insights.append(f"��������Ƭ� {stats['price_stats']['median']:,} ��")
            
            if stats['price_stats']['mean'] > stats['price_stats']['median']:
                insights.append("���������V�k���סA�s�b����������԰�������")
        
        # �������R�}��
        if 'price_distribution' in self.analysis_results:
            dist = self.analysis_results['price_distribution']
            if dist:
                most_common_range = max(dist, key=dist.get)
                count = dist[most_common_range]
                percentage = (count / self.analysis_results['basic_stats']['total_properties']) * 100
                insights.append(f"�̱`���������϶��O {most_common_range}�A�� {percentage:.1f}%")
        
        # Hugging Face���R�}��
        if 'hf_analysis' in self.analysis_results and self.analysis_results['hf_analysis']:
            hf_results = self.analysis_results['hf_analysis']
            if 'sentiment_distribution' in hf_results:
                insights.append("�w�ϥ�Hugging Face�ҫ��i�污�P���R")
        
        return insights
    
    def run_analysis(self) -> Dict:
        """���槹����R"""
        
        # �M�~���
        self.clean_data()
        
        # �򥻲έp
        self.analysis_results['basic_stats'] = self.basic_statistics()
        
        # �������R
        self.analysis_results['price_distribution'] = self.price_distribution_analysis()
        self.analysis_results['area_distribution'] = self.area_distribution_analysis()
        
        # ����r���R
        self.analysis_results['keywords_analysis'] = self.keywords_analysis()
        
        # �����ʤ��R
        self.analysis_results['correlation'] = self.correlation_analysis()
        
        # Hugging Face���R
        if self.use_hf_models:
            self.analysis_results['hf_analysis'] = self.huggingface_analysis()
        
        # �ͦ��}��
        self.analysis_results['insights'] = self.generate_insights()
        
        return self.analysis_results