# �� Copilot �ͦ� # �̤p�ƴ��ժ��� - �Ω�E�_ Hugging Face Spaces ���D import gradio as gr import pandas as pd import numpy as np from typing import Dict def create_minimal_test_data(): """�Ыس̤p���ո��""" np.random.seed(42) data = [] for i in range(20): data.append({ 'title': f'���ժ��� {i+1}', 'price': np.random.randint(20000, 40000), 'area': np.random.randint(25, 45), 'address': f'���������s�ϴ��ո�{i+1}��' }) return pd.DataFrame(data) def minimal_analysis(sample_size): """�̤p�Ƥ��R�\��""" try: # �Ыش��ո�� df = create_minimal_test_data() # �򥻲έp stats = { '�����': len(df), '��������': f"{df['price'].mean():.0f} ��", '���������': f"{df['price'].median():.0f} ��", '�����W��': f"{df['area'].mean():.1f} �W" } # �ͦ�²����i report = f""" # ? 591���Τ��R�� - ���ժ��� ## ? �򥻲έp - �����`�ơG{stats['�����']} �� - ���������G{stats['��������']} - ��������ơG{stats['���������']} - �����W�ơG{stats['�����W��']} ## ? �t�Ϊ��A - ��ƥͦ��G���` - ���R�\��G���` - Gradio �����G���` **�� Copilot �ͦ�** """ return report, df.head(10) except Exception as e: error_msg = f""" # ? ���~���i �o�Ϳ��~�G{str(e)} �o�O�@�ӶE�_�����A�Ц^�������~�T���C """ empty_df = pd.DataFrame() return error_msg, empty_df def create_minimal_interface(): """�Ыس̤p�Ƥ���""" interface = gr.Interface( fn=minimal_analysis, inputs=[ gr.Slider( minimum=10, maximum=50, value=20, step=10, label="���ո�Ƶ���" ) ], outputs=[ gr.Markdown(label="���R���i"), gr.Dataframe(label="��ƹw��") ], title="? 591���Τ��R�� - �E�_����", description="�o�O�@�ӳ̤p�ƴ��ժ����A�Ω�E�_ Hugging Face Spaces ���p���D�C", theme=gr.themes.Soft(), allow_flagging="never" ) return interface if __name__ == "__main__": demo = create_minimal_interface() demo.launch()