Spaces:
Sleeping
Sleeping
File size: 22,168 Bytes
922edf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
"""
Unified FastAPI API for InLegalBERT Analysis & Hackathon Features
==================================================================
This module provides REST API endpoints for:
1. Bias detection and outcome prediction (InLegalBERT)
2. Multilingual translation (9 languages)
3. Legal document generation (4 types)
4. Plain language simplification
5. What-if simulation engine
6. Sensitivity analysis
All features consolidated into a single API on port 8001.
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any
import uvicorn
from datetime import datetime
from bias_prediction_engine import analyze_legal_case, get_model
from translation_service import get_translation_service
from document_generator import get_document_generator
from simulation_engine import get_simulation_engine
# ============================================================================
# FASTAPI APP SETUP
# ============================================================================
app = FastAPI(
title="LexAI Unified ML API",
description="Comprehensive legal AI analysis: bias detection, translation, document generation, and simulation",
version="2.0.0"
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ============================================================================
# PYDANTIC MODELS (Request/Response Schemas)
# ============================================================================
# --- Bias Analysis Models ---
class CaseMetadata(BaseModel):
"""Optional metadata for case analysis"""
case_type: Optional[str] = Field(None, description="Type of case (criminal, civil, bail, etc.)")
jurisdiction: Optional[str] = Field(None, description="Court jurisdiction")
year: Optional[int] = Field(None, description="Case year")
class HistoricalCase(BaseModel):
"""Historical case data for systemic bias analysis"""
outcome: str = Field(..., description="Case outcome (conviction, acquittal, etc.)")
gender: Optional[str] = Field(None, description="Gender of defendant")
region: Optional[str] = Field(None, description="Geographic region")
caste: Optional[str] = Field(None, description="Caste category")
case_type: Optional[str] = Field(None, description="Type of case")
year: Optional[int] = Field(None, description="Year of case")
class AnalysisRequest(BaseModel):
"""Main request model for comprehensive analysis"""
case_text: str = Field(..., description="Legal document/FIR/judgment text", min_length=10)
rag_summary: Optional[str] = Field(None, description="AI-generated summary for RAG bias detection")
source_documents: Optional[List[str]] = Field(None, description="Source documents used for RAG")
historical_cases: Optional[List[HistoricalCase]] = Field(None, description="Historical cases for systemic analysis")
case_metadata: Optional[CaseMetadata] = Field(None, description="Case metadata")
class DocumentBiasRequest(BaseModel):
"""Request for document-only bias detection"""
case_text: str = Field(..., description="Legal document text")
threshold: float = Field(0.15, ge=0.0, le=1.0, description="Bias detection threshold")
class RAGBiasRequest(BaseModel):
"""Request for RAG output bias detection"""
rag_summary: str = Field(..., description="AI-generated summary")
source_documents: List[str] = Field(..., description="Source documents")
class SystemicBiasRequest(BaseModel):
"""Request for systemic bias analysis"""
historical_cases: List[HistoricalCase] = Field(..., description="Historical case data")
class OutcomePredictionRequest(BaseModel):
"""Request for outcome prediction only"""
case_text: str = Field(..., description="Legal case text")
case_metadata: Optional[CaseMetadata] = Field(None, description="Optional case metadata")
class AnalysisResponse(BaseModel):
"""Response model for analysis results"""
status: str
analysis_id: str
timestamp: str
document_bias: Optional[Dict[str, Any]] = None
rag_bias: Optional[Dict[str, Any]] = None
systemic_bias: Optional[Dict[str, Any]] = None
outcome_prediction: Optional[Dict[str, Any]] = None
# --- Translation & Simplification Models ---
class TranslateRequest(BaseModel):
text: str = Field(..., description="Text to translate")
source_lang: str = Field("auto", description="Source language (auto-detect)")
target_lang: str = Field("en", description="Target language")
class SimplifyRequest(BaseModel):
legal_text: str = Field(..., description="Complex legal text")
reading_level: str = Field("simple", description="Reading level (simple/intermediate)")
# --- Document Generation Models ---
class DocumentGenerateRequest(BaseModel):
document_type: str = Field(..., description="Type: bail_application, fir_complaint, legal_notice, petition")
details: Dict[str, Any] = Field(..., description="Document details")
# --- Simulation Models ---
class SimulationRequest(BaseModel):
base_case: Dict[str, Any] = Field(..., description="Original case facts")
modifications: Dict[str, Any] = Field(..., description="Modifications to test")
class SensitivityRequest(BaseModel):
case_facts: str = Field(..., description="Case facts for sensitivity analysis")
# ============================================================================
# ROOT & HEALTH CHECK
# ============================================================================
@app.get("/")
async def root():
"""API health check and feature overview"""
return {
"service": "LexAI Unified ML API",
"status": "operational",
"version": "2.0.0",
"port": 8001,
"features": {
"bias_analysis": "InLegalBERT-powered bias detection",
"outcome_prediction": "Legal case outcome prediction",
"translation": "9 Indian languages supported",
"simplification": "Plain language conversion",
"document_generation": "4 legal document types",
"simulation": "What-if scenario analysis"
},
"timestamp": datetime.now().isoformat()
}
# ============================================================================
# BIAS ANALYSIS ENDPOINTS
# ============================================================================
@app.post("/api/v1/analyze/comprehensive", response_model=AnalysisResponse)
async def comprehensive_analysis(request: AnalysisRequest):
"""
Perform comprehensive legal case analysis including:
- Document bias detection
- RAG output bias detection (if RAG summary provided)
- Systemic bias analysis (if historical cases provided)
- Outcome prediction
"""
try:
# Convert Pydantic models to dicts
historical_cases_dict = None
if request.historical_cases:
historical_cases_dict = [case.dict() for case in request.historical_cases]
case_metadata_dict = None
if request.case_metadata:
case_metadata_dict = request.case_metadata.dict()
# Run analysis
results = analyze_legal_case(
case_text=request.case_text,
rag_summary=request.rag_summary,
source_documents=request.source_documents,
historical_cases=historical_cases_dict,
case_metadata=case_metadata_dict
)
return results
except Exception as e:
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
@app.post("/api/v1/analyze/document-bias")
async def document_bias_analysis(request: DocumentBiasRequest):
"""Analyze document for textual biases (gender, caste, region, etc.)"""
try:
model = get_model()
results = model.detect_document_bias(request.case_text, request.threshold)
return {
"status": "success",
"analysis_id": f"doc_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"timestamp": datetime.now().isoformat(),
"results": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Document bias analysis failed: {str(e)}")
@app.post("/api/v1/analyze/rag-bias")
async def rag_bias_analysis(request: RAGBiasRequest):
"""Analyze RAG-generated output for tone, interpretive, and selectivity biases"""
try:
model = get_model()
results = model.detect_rag_output_bias(
request.rag_summary,
request.source_documents
)
return {
"status": "success",
"analysis_id": f"rag_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"timestamp": datetime.now().isoformat(),
"results": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"RAG bias analysis failed: {str(e)}")
@app.post("/api/v1/analyze/systemic-bias")
async def systemic_bias_analysis(request: SystemicBiasRequest):
"""Analyze historical cases for systemic and statistical biases"""
try:
model = get_model()
historical_cases_dict = [case.dict() for case in request.historical_cases]
results = model.detect_systemic_bias(historical_cases_dict)
return {
"status": "success",
"analysis_id": f"systemic_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"timestamp": datetime.now().isoformat(),
"results": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Systemic bias analysis failed: {str(e)}")
@app.post("/api/v1/predict/outcome")
async def outcome_prediction(request: OutcomePredictionRequest):
"""Predict legal case outcome with confidence score"""
try:
model = get_model()
case_metadata_dict = None
if request.case_metadata:
case_metadata_dict = request.case_metadata.dict()
results = model.predict_outcome(request.case_text, case_metadata_dict)
return {
"status": "success",
"analysis_id": f"prediction_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"timestamp": datetime.now().isoformat(),
"results": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Outcome prediction failed: {str(e)}")
@app.get("/api/v1/model/info")
async def model_info():
"""Get information about the loaded model"""
try:
model = get_model()
return {
"model_name": "InLegalBERT (law-ai/InLegalBERT)",
"device": str(model.device),
"bias_types_supported": list(model.bias_keywords.keys()),
"status": "loaded",
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model info retrieval failed: {str(e)}")
# ============================================================================
# TRANSLATION ENDPOINTS
# ============================================================================
@app.post("/api/v1/translate/query")
async def translate_query(request: TranslateRequest):
"""
Translate user query to English for processing
**Supports**: Hindi, Tamil, Telugu, Bengali, Marathi, Gujarati, Kannada, Malayalam
"""
try:
service = get_translation_service()
result = service.translate_query(
request.text,
request.source_lang,
request.target_lang
)
return {
"status": "success",
"translation": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/v1/translate/response")
async def translate_response(request: TranslateRequest):
"""Translate AI response to user's language"""
try:
service = get_translation_service()
result = service.translate_response(
request.text,
request.target_lang
)
return {
"status": "success",
"translation": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/v1/languages")
async def get_supported_languages():
"""Get list of supported languages"""
service = get_translation_service()
return {
"languages": service.get_supported_languages(),
"total": len(service.get_supported_languages())
}
# ============================================================================
# SIMPLIFICATION ENDPOINTS
# ============================================================================
@app.post("/api/v1/simplify")
async def simplify_legal_text(request: SimplifyRequest):
"""
Convert complex legal language to plain language
**Perfect for citizens!**
"""
try:
service = get_translation_service()
result = service.simplify_legal_text(
request.legal_text,
request.reading_level
)
return {
"status": "success",
"simplification": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============================================================================
# DOCUMENT GENERATION ENDPOINTS
# ============================================================================
@app.post("/api/v1/generate/document")
async def generate_document(request: DocumentGenerateRequest):
"""
Generate legal documents from templates
**Available Types:**
- `bail_application`: Bail application under CrPC
- `fir_complaint`: FIR/Complaint for police
- `legal_notice`: Legal notice
- `petition`: Court petition
"""
try:
generator = get_document_generator()
if request.document_type == 'bail_application':
result = generator.generate_bail_application(request.details)
elif request.document_type == 'fir_complaint':
result = generator.generate_fir(request.details)
elif request.document_type == 'legal_notice':
result = generator.generate_legal_notice(request.details)
elif request.document_type == 'petition':
result = generator.generate_petition(request.details)
else:
raise HTTPException(
status_code=400,
detail=f"Unknown document type: {request.document_type}"
)
return {
"status": "success",
"document": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/v1/templates")
async def get_templates():
"""Get list of available document templates"""
generator = get_document_generator()
return {
"templates": generator.get_template_list(),
"total": len(generator.get_template_list())
}
# ============================================================================
# SIMULATION ENDPOINTS
# ============================================================================
@app.post("/api/v1/simulate/outcome")
async def simulate_outcome(request: SimulationRequest):
"""
What-If Simulation: See how case facts affect outcomes
**Modifications Available:**
- `remove_prior_conviction`: Remove criminal history
- `add_strong_alibi`: Add alibi evidence
- `improve_witness_credibility`: Enhance witness reliability
- `add_mitigating_factors`: Add favorable circumstances
- `reduce_flight_risk`: Show community ties
- `enhance_evidence`: Strengthen evidence quality
"""
try:
engine = get_simulation_engine()
result = engine.simulate_outcome(
request.base_case,
request.modifications
)
return {
"status": "success",
"simulation": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/v1/simulate/sensitivity")
async def sensitivity_analysis(request: SensitivityRequest):
"""
Sensitivity Analysis: Test impact of each factor independently
Shows which factors have the most influence on case outcome
"""
try:
engine = get_simulation_engine()
result = engine.sensitivity_analysis(request.case_facts)
return {
"status": "success",
"sensitivity": result,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============================================================================
# DEMO ENDPOINT
# ============================================================================
@app.get("/api/v1/demo/complete")
async def complete_demo():
"""
Complete feature demonstration
Shows all capabilities in one response
"""
# 1. Translation
translation_service = get_translation_service()
translation_demo = translation_service.translate_query(
"मुझे जमानत चाहिए",
"hi",
"en"
)
# 2. Simplification
simplification_demo = translation_service.simplify_legal_text(
"The appellant filed a habeas corpus petition under Article 226.",
"simple"
)
# 3. Document Generation
doc_generator = get_document_generator()
doc_demo = doc_generator.generate_bail_application({
'applicant_name': 'Demo User',
'state': 'Demo State',
'first_time_offender': True
})
# 4. Simulation
sim_engine = get_simulation_engine()
sim_demo = sim_engine.simulate_outcome(
{'facts': 'Accused has prior conviction. Witnesses unreliable.'},
{'remove_prior_conviction': True, 'improve_witness_credibility': True}
)
return {
"status": "success",
"demo_features": {
"1_translation": {
"feature": "Multilingual Support",
"input": "मुझे जमानत चाहिए (Hindi)",
"output": translation_demo['translated_text'],
"languages_supported": 9
},
"2_simplification": {
"feature": "Plain Language Conversion",
"original": "habeas corpus petition under Article 226",
"simplified": simplification_demo['simplified_text'][:100] + "...",
"reading_level": "Grade 8"
},
"3_document_generation": {
"feature": "Legal Document Generator",
"document_type": "Bail Application",
"length": len(doc_demo['content']),
"editable": doc_demo['editable'],
"preview": doc_demo['content'][:300] + "..."
},
"4_simulation": {
"feature": "What-If Simulation",
"base_outcome": sim_demo['base_case']['prediction']['predictedOutcome'],
"modified_outcome": sim_demo['modified_case']['prediction']['predictedOutcome'],
"outcome_changed": sim_demo['impact_analysis']['outcome_changed'],
"confidence_change": f"{sim_demo['impact_analysis']['confidence_change_percent']}%"
}
},
"total_features_demonstrated": 4,
"ai_models_used": [
"InLegalBERT (Bias Detection)",
"Google Translate (Multilingual)",
"Template-based Document Generation",
"Simulation Engine"
],
"timestamp": datetime.now().isoformat()
}
# ============================================================================
# STARTUP EVENT
# ============================================================================
@app.on_event("startup")
async def startup_event():
"""Initialize all services on startup"""
print("=" * 70)
print("🚀 LEXAI UNIFIED ML API")
print("=" * 70)
print("✅ InLegalBERT Model: Loading...")
get_model()
print("✅ InLegalBERT Model: Ready")
print("✅ Translation Service: Ready (9 languages)")
print("✅ Document Generator: Ready (4 templates)")
print("✅ Simplification: Ready")
print("✅ Simulation Engine: Ready")
print("=" * 70)
print("📍 API Docs: http://localhost:8001/docs")
print("🎯 Demo Endpoint: http://localhost:8001/api/v1/demo/complete")
print("=" * 70)
# ============================================================================
# MAIN ENTRY POINT
# ============================================================================
if __name__ == "__main__":
import os
port = int(os.environ.get("PORT", 8001))
uvicorn.run(
"api:app",
host="0.0.0.0",
port=port,
reload=False,
log_level="info"
) |