File size: 22,168 Bytes
922edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
"""

Unified FastAPI API for InLegalBERT Analysis & Hackathon Features

==================================================================



This module provides REST API endpoints for:

1. Bias detection and outcome prediction (InLegalBERT)

2. Multilingual translation (9 languages)

3. Legal document generation (4 types)

4. Plain language simplification

5. What-if simulation engine

6. Sensitivity analysis



All features consolidated into a single API on port 8001.

"""

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any
import uvicorn
from datetime import datetime

from bias_prediction_engine import analyze_legal_case, get_model
from translation_service import get_translation_service
from document_generator import get_document_generator
from simulation_engine import get_simulation_engine

# ============================================================================
# FASTAPI APP SETUP
# ============================================================================

app = FastAPI(
    title="LexAI Unified ML API",
    description="Comprehensive legal AI analysis: bias detection, translation, document generation, and simulation",
    version="2.0.0"
)

# CORS configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Configure appropriately for production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ============================================================================
# PYDANTIC MODELS (Request/Response Schemas)
# ============================================================================

# --- Bias Analysis Models ---
class CaseMetadata(BaseModel):
    """Optional metadata for case analysis"""
    case_type: Optional[str] = Field(None, description="Type of case (criminal, civil, bail, etc.)")
    jurisdiction: Optional[str] = Field(None, description="Court jurisdiction")
    year: Optional[int] = Field(None, description="Case year")
    

class HistoricalCase(BaseModel):
    """Historical case data for systemic bias analysis"""
    outcome: str = Field(..., description="Case outcome (conviction, acquittal, etc.)")
    gender: Optional[str] = Field(None, description="Gender of defendant")
    region: Optional[str] = Field(None, description="Geographic region")
    caste: Optional[str] = Field(None, description="Caste category")
    case_type: Optional[str] = Field(None, description="Type of case")
    year: Optional[int] = Field(None, description="Year of case")


class AnalysisRequest(BaseModel):
    """Main request model for comprehensive analysis"""
    case_text: str = Field(..., description="Legal document/FIR/judgment text", min_length=10)
    rag_summary: Optional[str] = Field(None, description="AI-generated summary for RAG bias detection")
    source_documents: Optional[List[str]] = Field(None, description="Source documents used for RAG")
    historical_cases: Optional[List[HistoricalCase]] = Field(None, description="Historical cases for systemic analysis")
    case_metadata: Optional[CaseMetadata] = Field(None, description="Case metadata")


class DocumentBiasRequest(BaseModel):
    """Request for document-only bias detection"""
    case_text: str = Field(..., description="Legal document text")
    threshold: float = Field(0.15, ge=0.0, le=1.0, description="Bias detection threshold")


class RAGBiasRequest(BaseModel):
    """Request for RAG output bias detection"""
    rag_summary: str = Field(..., description="AI-generated summary")
    source_documents: List[str] = Field(..., description="Source documents")


class SystemicBiasRequest(BaseModel):
    """Request for systemic bias analysis"""
    historical_cases: List[HistoricalCase] = Field(..., description="Historical case data")


class OutcomePredictionRequest(BaseModel):
    """Request for outcome prediction only"""
    case_text: str = Field(..., description="Legal case text")
    case_metadata: Optional[CaseMetadata] = Field(None, description="Optional case metadata")


class AnalysisResponse(BaseModel):
    """Response model for analysis results"""
    status: str
    analysis_id: str
    timestamp: str
    document_bias: Optional[Dict[str, Any]] = None
    rag_bias: Optional[Dict[str, Any]] = None
    systemic_bias: Optional[Dict[str, Any]] = None
    outcome_prediction: Optional[Dict[str, Any]] = None


# --- Translation & Simplification Models ---
class TranslateRequest(BaseModel):
    text: str = Field(..., description="Text to translate")
    source_lang: str = Field("auto", description="Source language (auto-detect)")
    target_lang: str = Field("en", description="Target language")


class SimplifyRequest(BaseModel):
    legal_text: str = Field(..., description="Complex legal text")
    reading_level: str = Field("simple", description="Reading level (simple/intermediate)")


# --- Document Generation Models ---
class DocumentGenerateRequest(BaseModel):
    document_type: str = Field(..., description="Type: bail_application, fir_complaint, legal_notice, petition")
    details: Dict[str, Any] = Field(..., description="Document details")


# --- Simulation Models ---
class SimulationRequest(BaseModel):
    base_case: Dict[str, Any] = Field(..., description="Original case facts")
    modifications: Dict[str, Any] = Field(..., description="Modifications to test")


class SensitivityRequest(BaseModel):
    case_facts: str = Field(..., description="Case facts for sensitivity analysis")


# ============================================================================
# ROOT & HEALTH CHECK
# ============================================================================

@app.get("/")
async def root():
    """API health check and feature overview"""
    return {
        "service": "LexAI Unified ML API",
        "status": "operational",
        "version": "2.0.0",
        "port": 8001,
        "features": {
            "bias_analysis": "InLegalBERT-powered bias detection",
            "outcome_prediction": "Legal case outcome prediction",
            "translation": "9 Indian languages supported",
            "simplification": "Plain language conversion",
            "document_generation": "4 legal document types",
            "simulation": "What-if scenario analysis"
        },
        "timestamp": datetime.now().isoformat()
    }


# ============================================================================
# BIAS ANALYSIS ENDPOINTS
# ============================================================================

@app.post("/api/v1/analyze/comprehensive", response_model=AnalysisResponse)
async def comprehensive_analysis(request: AnalysisRequest):
    """

    Perform comprehensive legal case analysis including:

    - Document bias detection

    - RAG output bias detection (if RAG summary provided)

    - Systemic bias analysis (if historical cases provided)

    - Outcome prediction

    """
    try:
        # Convert Pydantic models to dicts
        historical_cases_dict = None
        if request.historical_cases:
            historical_cases_dict = [case.dict() for case in request.historical_cases]
        
        case_metadata_dict = None
        if request.case_metadata:
            case_metadata_dict = request.case_metadata.dict()
        
        # Run analysis
        results = analyze_legal_case(
            case_text=request.case_text,
            rag_summary=request.rag_summary,
            source_documents=request.source_documents,
            historical_cases=historical_cases_dict,
            case_metadata=case_metadata_dict
        )
        
        return results
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")


@app.post("/api/v1/analyze/document-bias")
async def document_bias_analysis(request: DocumentBiasRequest):
    """Analyze document for textual biases (gender, caste, region, etc.)"""
    try:
        model = get_model()
        results = model.detect_document_bias(request.case_text, request.threshold)
        
        return {
            "status": "success",
            "analysis_id": f"doc_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "timestamp": datetime.now().isoformat(),
            "results": results
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Document bias analysis failed: {str(e)}")


@app.post("/api/v1/analyze/rag-bias")
async def rag_bias_analysis(request: RAGBiasRequest):
    """Analyze RAG-generated output for tone, interpretive, and selectivity biases"""
    try:
        model = get_model()
        results = model.detect_rag_output_bias(
            request.rag_summary,
            request.source_documents
        )
        
        return {
            "status": "success",
            "analysis_id": f"rag_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "timestamp": datetime.now().isoformat(),
            "results": results
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"RAG bias analysis failed: {str(e)}")


@app.post("/api/v1/analyze/systemic-bias")
async def systemic_bias_analysis(request: SystemicBiasRequest):
    """Analyze historical cases for systemic and statistical biases"""
    try:
        model = get_model()
        historical_cases_dict = [case.dict() for case in request.historical_cases]
        results = model.detect_systemic_bias(historical_cases_dict)
        
        return {
            "status": "success",
            "analysis_id": f"systemic_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "timestamp": datetime.now().isoformat(),
            "results": results
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Systemic bias analysis failed: {str(e)}")


@app.post("/api/v1/predict/outcome")
async def outcome_prediction(request: OutcomePredictionRequest):
    """Predict legal case outcome with confidence score"""
    try:
        model = get_model()
        case_metadata_dict = None
        if request.case_metadata:
            case_metadata_dict = request.case_metadata.dict()
        
        results = model.predict_outcome(request.case_text, case_metadata_dict)
        
        return {
            "status": "success",
            "analysis_id": f"prediction_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "timestamp": datetime.now().isoformat(),
            "results": results
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Outcome prediction failed: {str(e)}")


@app.get("/api/v1/model/info")
async def model_info():
    """Get information about the loaded model"""
    try:
        model = get_model()
        return {
            "model_name": "InLegalBERT (law-ai/InLegalBERT)",
            "device": str(model.device),
            "bias_types_supported": list(model.bias_keywords.keys()),
            "status": "loaded",
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Model info retrieval failed: {str(e)}")


# ============================================================================
# TRANSLATION ENDPOINTS
# ============================================================================

@app.post("/api/v1/translate/query")
async def translate_query(request: TranslateRequest):
    """

    Translate user query to English for processing

    

    **Supports**: Hindi, Tamil, Telugu, Bengali, Marathi, Gujarati, Kannada, Malayalam

    """
    try:
        service = get_translation_service()
        result = service.translate_query(
            request.text,
            request.source_lang,
            request.target_lang
        )
        
        return {
            "status": "success",
            "translation": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/api/v1/translate/response")
async def translate_response(request: TranslateRequest):
    """Translate AI response to user's language"""
    try:
        service = get_translation_service()
        result = service.translate_response(
            request.text,
            request.target_lang
        )
        
        return {
            "status": "success",
            "translation": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/api/v1/languages")
async def get_supported_languages():
    """Get list of supported languages"""
    service = get_translation_service()
    return {
        "languages": service.get_supported_languages(),
        "total": len(service.get_supported_languages())
    }


# ============================================================================
# SIMPLIFICATION ENDPOINTS
# ============================================================================

@app.post("/api/v1/simplify")
async def simplify_legal_text(request: SimplifyRequest):
    """

    Convert complex legal language to plain language

    

    **Perfect for citizens!**

    """
    try:
        service = get_translation_service()
        result = service.simplify_legal_text(
            request.legal_text,
            request.reading_level
        )
        
        return {
            "status": "success",
            "simplification": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# ============================================================================
# DOCUMENT GENERATION ENDPOINTS
# ============================================================================

@app.post("/api/v1/generate/document")
async def generate_document(request: DocumentGenerateRequest):
    """

    Generate legal documents from templates

    

    **Available Types:**

    - `bail_application`: Bail application under CrPC

    - `fir_complaint`: FIR/Complaint for police

    - `legal_notice`: Legal notice

    - `petition`: Court petition

    """
    try:
        generator = get_document_generator()
        
        if request.document_type == 'bail_application':
            result = generator.generate_bail_application(request.details)
        elif request.document_type == 'fir_complaint':
            result = generator.generate_fir(request.details)
        elif request.document_type == 'legal_notice':
            result = generator.generate_legal_notice(request.details)
        elif request.document_type == 'petition':
            result = generator.generate_petition(request.details)
        else:
            raise HTTPException(
                status_code=400,
                detail=f"Unknown document type: {request.document_type}"
            )
        
        return {
            "status": "success",
            "document": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/api/v1/templates")
async def get_templates():
    """Get list of available document templates"""
    generator = get_document_generator()
    return {
        "templates": generator.get_template_list(),
        "total": len(generator.get_template_list())
    }


# ============================================================================
# SIMULATION ENDPOINTS
# ============================================================================

@app.post("/api/v1/simulate/outcome")
async def simulate_outcome(request: SimulationRequest):
    """

    What-If Simulation: See how case facts affect outcomes

    

    **Modifications Available:**

    - `remove_prior_conviction`: Remove criminal history

    - `add_strong_alibi`: Add alibi evidence

    - `improve_witness_credibility`: Enhance witness reliability

    - `add_mitigating_factors`: Add favorable circumstances

    - `reduce_flight_risk`: Show community ties

    - `enhance_evidence`: Strengthen evidence quality

    """
    try:
        engine = get_simulation_engine()
        result = engine.simulate_outcome(
            request.base_case,
            request.modifications
        )
        
        return {
            "status": "success",
            "simulation": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/api/v1/simulate/sensitivity")
async def sensitivity_analysis(request: SensitivityRequest):
    """

    Sensitivity Analysis: Test impact of each factor independently

    

    Shows which factors have the most influence on case outcome

    """
    try:
        engine = get_simulation_engine()
        result = engine.sensitivity_analysis(request.case_facts)
        
        return {
            "status": "success",
            "sensitivity": result,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# ============================================================================
# DEMO ENDPOINT
# ============================================================================

@app.get("/api/v1/demo/complete")
async def complete_demo():
    """

    Complete feature demonstration

    

    Shows all capabilities in one response

    """
    
    # 1. Translation
    translation_service = get_translation_service()
    translation_demo = translation_service.translate_query(
        "मुझे जमानत चाहिए",
        "hi",
        "en"
    )
    
    # 2. Simplification
    simplification_demo = translation_service.simplify_legal_text(
        "The appellant filed a habeas corpus petition under Article 226.",
        "simple"
    )
    
    # 3. Document Generation
    doc_generator = get_document_generator()
    doc_demo = doc_generator.generate_bail_application({
        'applicant_name': 'Demo User',
        'state': 'Demo State',
        'first_time_offender': True
    })
    
    # 4. Simulation
    sim_engine = get_simulation_engine()
    sim_demo = sim_engine.simulate_outcome(
        {'facts': 'Accused has prior conviction. Witnesses unreliable.'},
        {'remove_prior_conviction': True, 'improve_witness_credibility': True}
    )
    
    return {
        "status": "success",
        "demo_features": {
            "1_translation": {
                "feature": "Multilingual Support",
                "input": "मुझे जमानत चाहिए (Hindi)",
                "output": translation_demo['translated_text'],
                "languages_supported": 9
            },
            "2_simplification": {
                "feature": "Plain Language Conversion",
                "original": "habeas corpus petition under Article 226",
                "simplified": simplification_demo['simplified_text'][:100] + "...",
                "reading_level": "Grade 8"
            },
            "3_document_generation": {
                "feature": "Legal Document Generator",
                "document_type": "Bail Application",
                "length": len(doc_demo['content']),
                "editable": doc_demo['editable'],
                "preview": doc_demo['content'][:300] + "..."
            },
            "4_simulation": {
                "feature": "What-If Simulation",
                "base_outcome": sim_demo['base_case']['prediction']['predictedOutcome'],
                "modified_outcome": sim_demo['modified_case']['prediction']['predictedOutcome'],
                "outcome_changed": sim_demo['impact_analysis']['outcome_changed'],
                "confidence_change": f"{sim_demo['impact_analysis']['confidence_change_percent']}%"
            }
        },
        "total_features_demonstrated": 4,
        "ai_models_used": [
            "InLegalBERT (Bias Detection)",
            "Google Translate (Multilingual)",
            "Template-based Document Generation",
            "Simulation Engine"
        ],
        "timestamp": datetime.now().isoformat()
    }


# ============================================================================
# STARTUP EVENT
# ============================================================================

@app.on_event("startup")
async def startup_event():
    """Initialize all services on startup"""
    print("=" * 70)
    print("🚀 LEXAI UNIFIED ML API")
    print("=" * 70)
    print("✅ InLegalBERT Model: Loading...")
    get_model()
    print("✅ InLegalBERT Model: Ready")
    print("✅ Translation Service: Ready (9 languages)")
    print("✅ Document Generator: Ready (4 templates)")
    print("✅ Simplification: Ready")
    print("✅ Simulation Engine: Ready")
    print("=" * 70)
    print("📍 API Docs: http://localhost:8001/docs")
    print("🎯 Demo Endpoint: http://localhost:8001/api/v1/demo/complete")
    print("=" * 70)


# ============================================================================
# MAIN ENTRY POINT
# ============================================================================

if __name__ == "__main__":
    import os
    port = int(os.environ.get("PORT", 8001))
    uvicorn.run(
        "api:app",
        host="0.0.0.0",
        port=port,
        reload=False,
        log_level="info"
    )