File size: 12,913 Bytes
922edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""

What-If Simulation Engine for LexAI

===================================



Hackathon MVP - Interactive case outcome simulation

Shows how changes in case facts affect predictions

"""

from typing import Dict, Any, List, Optional
import re
from bias_prediction_engine import get_model

class SimulationEngine:
    """

    Simulate legal case outcomes with modified facts

    """
    
    def __init__(self):
        self.ml_model = get_model()
        
        # Modifiable factors and their impacts
        self.factor_impacts = {
            'prior_conviction': {
                'weight': 0.25,
                'direction': 'negative',
                'description': 'Previous criminal record'
            },
            'witness_credibility': {
                'weight': 0.20,
                'direction': 'positive',
                'description': 'Reliability of witnesses'
            },
            'evidence_quality': {
                'weight': 0.30,
                'direction': 'positive',
                'description': 'Strength of evidence'
            },
            'mitigating_factors': {
                'weight': 0.15,
                'direction': 'positive',
                'description': 'Circumstances favoring accused'
            },
            'flight_risk': {
                'weight': 0.10,
                'direction': 'negative',
                'description': 'Risk of absconding'
            }
        }
    
    def simulate_outcome(self, 

                        base_case: Dict[str, Any], 

                        modifications: Dict[str, Any]) -> Dict[str, Any]:
        """

        Simulate how case outcome changes with modifications

        

        Args:

            base_case: Original case facts

            modifications: Changes to apply

            

        Returns:

            Comparison of outcomes

        """
        
        # Get base prediction
        base_text = base_case.get('facts', '')
        base_prediction = self.ml_model.predict_outcome(
            base_text,
            base_case.get('metadata', {})
        )
        
        # Apply modifications
        modified_text = self._apply_modifications(base_text, modifications)
        modified_prediction = self.ml_model.predict_outcome(
            modified_text,
            base_case.get('metadata', {})
        )
        
        # Calculate impact
        impact_analysis = self._analyze_impact(
            base_prediction,
            modified_prediction,
            modifications
        )
        
        return {
            'base_case': {
                'facts': base_text,
                'prediction': base_prediction
            },
            'modified_case': {
                'facts': modified_text,
                'prediction': modified_prediction,
                'changes_applied': list(modifications.keys())
            },
            'impact_analysis': impact_analysis,
            'visualization_data': self._generate_viz_data(
                base_prediction,
                modified_prediction
            )
        }
    
    def _apply_modifications(self, base_text: str, modifications: Dict[str, Any]) -> str:
        """Apply modifications to case facts"""
        modified = base_text
        
        # Remove prior conviction if specified
        if modifications.get('remove_prior_conviction'):
            modified = re.sub(
                r'(prior conviction|criminal record|previous offense).*?\.', 
                'has no prior criminal record.', 
                modified, 
                flags=re.IGNORECASE
            )
        
        # Add strong alibi
        if modifications.get('add_strong_alibi'):
            modified += " The accused has a strong alibi with multiple credible witnesses confirming their presence elsewhere during the incident."
        
        # Improve witness credibility
        if modifications.get('improve_witness_credibility'):
            modified = re.sub(
                r'(witness.*?)(contradictory|unreliable|questionable)',
                r'\1credible and consistent',
                modified,
                flags=re.IGNORECASE
            )
        
        # Add mitigating factors
        if modifications.get('add_mitigating_factors'):
            mitigating = modifications['add_mitigating_factors']
            modified += f" {mitigating}"
        
        # Reduce flight risk
        if modifications.get('reduce_flight_risk'):
            modified += " The accused has deep roots in the community, stable employment, and family responsibilities, eliminating any flight risk."
        
        # Enhance evidence quality
        if modifications.get('enhance_evidence'):
            modified = re.sub(
                r'(evidence.*?)(weak|insufficient|circumstantial)',
                r'\1strong and conclusive',
                modified,
                flags=re.IGNORECASE
            )
        
        return modified
    
    def _analyze_impact(self, 

                       base_pred: Dict, 

                       modified_pred: Dict,

                       modifications: Dict) -> Dict[str, Any]:
        """Analyze impact of modifications"""
        
        confidence_change = modified_pred['confidenceScore'] - base_pred['confidenceScore']
        outcome_changed = base_pred['predictedOutcome'] != modified_pred['predictedOutcome']
        
        # Calculate factor contributions
        factor_impacts = []
        for mod_key, mod_value in modifications.items():
            if mod_value:  # If modification was applied
                factor_name = mod_key.replace('_', ' ').title()
                estimated_impact = self._estimate_factor_impact(mod_key)
                factor_impacts.append({
                    'factor': factor_name,
                    'estimated_impact': estimated_impact,
                    'direction': 'positive' if estimated_impact > 0 else 'negative'
                })
        
        return {
            'outcome_changed': outcome_changed,
            'confidence_change': round(confidence_change, 3),
            'confidence_change_percent': round(confidence_change * 100, 1),
            'factor_contributions': factor_impacts,
            'key_factors': self._identify_key_factors(modifications),
            'recommendation': self._generate_recommendation(
                base_pred,
                modified_pred,
                outcome_changed
            )
        }
    
    def _estimate_factor_impact(self, factor_key: str) -> float:
        """Estimate impact of a specific factor"""
        impact_map = {
            'remove_prior_conviction': 0.25,
            'add_strong_alibi': 0.30,
            'improve_witness_credibility': 0.20,
            'add_mitigating_factors': 0.15,
            'reduce_flight_risk': 0.10,
            'enhance_evidence': 0.35,
        }
        return impact_map.get(factor_key, 0.10)
    
    def _identify_key_factors(self, modifications: Dict) -> List[str]:
        """Identify most impactful factors"""
        applied_mods = [k for k, v in modifications.items() if v]
        impacts = [(mod, self._estimate_factor_impact(mod)) for mod in applied_mods]
        impacts.sort(key=lambda x: x[1], reverse=True)
        return [mod.replace('_', ' ').title() for mod, _ in impacts[:3]]
    
    def _generate_recommendation(self, 

                                 base_pred: Dict,

                                 modified_pred: Dict,

                                 outcome_changed: bool) -> str:
        """Generate recommendation based on simulation"""
        if outcome_changed:
            return f"Modifying the specified factors could change the outcome from {base_pred['predictedOutcome']} to {modified_pred['predictedOutcome']}. These factors should be given priority in case preparation."
        else:
            conf_diff = abs(modified_pred['confidenceScore'] - base_pred['confidenceScore'])
            if conf_diff > 0.15:
                return f"While the outcome remains {base_pred['predictedOutcome']}, the confidence has changed by {round(conf_diff * 100, 1)}%. These factors significantly influence case strength."
            else:
                return "The modifications have minimal impact on the outcome. Other factors may be more critical to case success."
    
    def _generate_viz_data(self, base_pred: Dict, modified_pred: Dict) -> Dict:
        """Generate data for visualization"""
        return {
            'confidence_comparison': {
                'base': round(base_pred['confidenceScore'] * 100, 1),
                'modified': round(modified_pred['confidenceScore'] * 100, 1),
                'change': round((modified_pred['confidenceScore'] - base_pred['confidenceScore']) * 100, 1)
            },
            'outcome_labels': {
                'base': base_pred['predictedOutcome'],
                'modified': modified_pred['predictedOutcome']
            },
            'chart_type': 'bar_comparison',
            'color_scheme': {
                'base': '#6366f1',  # Indigo
                'modified': '#10b981'  # Green
            }
        }
    
    def sensitivity_analysis(self, case_facts: str) -> Dict[str, Any]:
        """

        Analyze sensitivity to different factors

        

        Tests each factor independently to see impact

        """
        base_prediction = self.ml_model.predict_outcome(case_facts, {})
        
        sensitivity_results = []
        
        # Test each modification independently
        test_modifications = [
            {'remove_prior_conviction': True},
            {'add_strong_alibi': True},
            {'improve_witness_credibility': True},
            {'add_mitigating_factors': 'First-time offender with family responsibilities'},
            {'reduce_flight_risk': True},
        ]
        
        for mod in test_modifications:
            result = self.simulate_outcome(
                {'facts': case_facts},
                mod
            )
            
            mod_name = list(mod.keys())[0].replace('_', ' ').title()
            sensitivity_results.append({
                'factor': mod_name,
                'confidence_impact': result['impact_analysis']['confidence_change'],
                'outcome_change': result['impact_analysis']['outcome_changed'],
                'new_outcome': result['modified_case']['prediction']['predictedOutcome']
            })
        
        # Sort by impact
        sensitivity_results.sort(
            key=lambda x: abs(x['confidence_impact']),
            reverse=True
        )
        
        return {
            'base_outcome': base_prediction['predictedOutcome'],
            'base_confidence': base_prediction['confidenceScore'],
            'sensitivity_analysis': sensitivity_results,
            'most_influential_factor': sensitivity_results[0]['factor'] if sensitivity_results else None,
            'visualization_ready': True
        }


# Global instance
_simulation_engine = None

def get_simulation_engine() -> SimulationEngine:
    """Get or create simulation engine instance"""
    global _simulation_engine
    if _simulation_engine is None:
        _simulation_engine = SimulationEngine()
    return _simulation_engine


# Test
if __name__ == "__main__":
    engine = SimulationEngine()
    
    # Test case
    base_case = {
        'facts': """

        The accused has prior conviction for theft. Witnesses gave contradictory statements.

        Evidence is largely circumstantial. The accused attempted to flee when arrested.

        """,
        'metadata': {'case_type': 'criminal'}
    }
    
    # Test modifications
    modifications = {
        'remove_prior_conviction': True,
        'add_strong_alibi': True,
        'improve_witness_credibility': True,
    }
    
    print("Running simulation...")
    result = engine.simulate_outcome(base_case, modifications)
    
    print(f"\nBase Outcome: {result['base_case']['prediction']['predictedOutcome']}")
    print(f"Base Confidence: {result['base_case']['prediction']['confidenceScore']}")
    
    print(f"\nModified Outcome: {result['modified_case']['prediction']['predictedOutcome']}")
    print(f"Modified Confidence: {result['modified_case']['prediction']['confidenceScore']}")
    
    print(f"\nOutcome Changed: {result['impact_analysis']['outcome_changed']}")
    print(f"Confidence Change: {result['impact_analysis']['confidence_change_percent']}%")
    print(f"Key Factors: {', '.join(result['impact_analysis']['key_factors'])}")
    print(f"\nRecommendation: {result['impact_analysis']['recommendation']}")