Spaces:
Runtime error
Runtime error
Commit
·
2bbd27c
1
Parent(s):
3e50cb7
Modify with tabs for architecture section
Browse files- app.py +127 -46
- public/chart1.png +3 -0
- public/chart2.png +3 -0
- public/nvidia-speech.png +3 -0
app.py
CHANGED
|
@@ -132,11 +132,13 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 132 |
summarize it or answer questions about it. In LLM mode, the model does not "understand" the raw audio anymore - only
|
| 133 |
its transcript. This model is ready for commercial use.''')
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
["Can you summarize this meeting?"],
|
| 141 |
["Please provide bullet points of the key items."],
|
| 142 |
["What is the TL;DR of this meeting?"],
|
|
@@ -144,8 +146,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 144 |
["What was the main topic?"],
|
| 145 |
]
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
with gr.Column(scale=1):
|
| 150 |
gr.Markdown("### Audio Input")
|
| 151 |
audio_input = gr.Audio(
|
|
@@ -160,9 +162,9 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 160 |
label="Example Audio"
|
| 161 |
)
|
| 162 |
transcribe_btn = gr.Button("Transcribe Audio", variant="primary", size="lg")
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
| 166 |
gr.Markdown("### Transcript")
|
| 167 |
transcript_output = gr.Textbox(
|
| 168 |
label="",
|
|
@@ -171,22 +173,22 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 171 |
max_lines=12,
|
| 172 |
autoscroll=True
|
| 173 |
)
|
| 174 |
-
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
with gr.Column(scale=1):
|
| 181 |
gr.Markdown("### Interactive Q&A")
|
| 182 |
gr.Markdown("#### About Context-Aware Q&A")
|
| 183 |
gr.Markdown("""The model retains the full transcript context, allowing you to ask follow-up questions
|
| 184 |
naturally without re-stating information. It understands references like 'they', 'it', or 'that topic'.""")
|
| 185 |
gr.Markdown("#### Example Questions")
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
# Add thinking display above chat
|
| 191 |
with gr.Accordion("🧠 Model Thinking", open=False):
|
| 192 |
thinking_box = gr.Textbox(
|
|
@@ -211,10 +213,10 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 211 |
lines=1
|
| 212 |
)
|
| 213 |
submit_chat_btn = gr.Button("Send", variant="primary", scale=1)
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
if not question or question.strip() == "":
|
| 219 |
yield "", [], ""
|
| 220 |
answer, thinking = transcript_qa(transcript, question)
|
|
@@ -223,21 +225,21 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 223 |
{"role": "user", "content": question},
|
| 224 |
{"role": "assistant", "content": answer}
|
| 225 |
]
|
| 226 |
-
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
gr.Examples(
|
| 232 |
examples=example_questions,
|
| 233 |
inputs=msg,
|
| 234 |
outputs=[msg, chatbot, thinking_box],
|
| 235 |
fn=lambda q: submit_question(q, transcript_state.value),
|
| 236 |
cache_examples=False,
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
-
|
| 241 |
fn=disable_transcribe,
|
| 242 |
outputs=[transcribe_btn]
|
| 243 |
).then(
|
|
@@ -249,35 +251,114 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 249 |
outputs=[transcript_output, transcript_state]
|
| 250 |
).then(
|
| 251 |
fn=enable_transcribe,
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
fn=lambda: None,
|
| 257 |
-
|
| 258 |
-
|
| 259 |
|
| 260 |
-
|
| 261 |
fn=lambda: ("", ""),
|
| 262 |
-
|
| 263 |
-
|
| 264 |
|
| 265 |
-
|
| 266 |
fn=submit_question,
|
| 267 |
inputs=[msg, transcript_state],
|
| 268 |
-
|
| 269 |
-
|
| 270 |
|
| 271 |
-
|
| 272 |
fn=submit_question,
|
| 273 |
inputs=[msg, transcript_state],
|
| 274 |
-
|
| 275 |
-
|
| 276 |
|
| 277 |
-
|
| 278 |
fn=lambda: ([], ""),
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
demo.queue()
|
| 283 |
demo.launch()
|
|
|
|
| 132 |
summarize it or answer questions about it. In LLM mode, the model does not "understand" the raw audio anymore - only
|
| 133 |
its transcript. This model is ready for commercial use.''')
|
| 134 |
|
| 135 |
+
with gr.Tabs():
|
| 136 |
+
with gr.Tab("Transcribe"):
|
| 137 |
+
# State variables
|
| 138 |
+
transcript_state = gr.State("")
|
| 139 |
|
| 140 |
+
# Example questions
|
| 141 |
+
example_questions = [
|
| 142 |
["Can you summarize this meeting?"],
|
| 143 |
["Please provide bullet points of the key items."],
|
| 144 |
["What is the TL;DR of this meeting?"],
|
|
|
|
| 146 |
["What was the main topic?"],
|
| 147 |
]
|
| 148 |
|
| 149 |
+
# Audio Input and Transcript
|
| 150 |
+
with gr.Row():
|
| 151 |
with gr.Column(scale=1):
|
| 152 |
gr.Markdown("### Audio Input")
|
| 153 |
audio_input = gr.Audio(
|
|
|
|
| 162 |
label="Example Audio"
|
| 163 |
)
|
| 164 |
transcribe_btn = gr.Button("Transcribe Audio", variant="primary", size="lg")
|
| 165 |
+
clear_audio_btn = gr.Button("Clear Audio")
|
| 166 |
|
| 167 |
+
with gr.Column(scale=1):
|
| 168 |
gr.Markdown("### Transcript")
|
| 169 |
transcript_output = gr.Textbox(
|
| 170 |
label="",
|
|
|
|
| 173 |
max_lines=12,
|
| 174 |
autoscroll=True
|
| 175 |
)
|
| 176 |
+
clear_transcript_btn = gr.Button("Clear Transcript")
|
| 177 |
|
| 178 |
+
# Spacing
|
| 179 |
+
gr.Markdown("---")
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
with gr.Column(scale=1):
|
| 183 |
gr.Markdown("### Interactive Q&A")
|
| 184 |
gr.Markdown("#### About Context-Aware Q&A")
|
| 185 |
gr.Markdown("""The model retains the full transcript context, allowing you to ask follow-up questions
|
| 186 |
naturally without re-stating information. It understands references like 'they', 'it', or 'that topic'.""")
|
| 187 |
gr.Markdown("#### Example Questions")
|
| 188 |
+
# Examples will be added after msg is defined
|
| 189 |
+
example_container = gr.Column()
|
| 190 |
+
|
| 191 |
+
with gr.Column(scale=3):
|
| 192 |
# Add thinking display above chat
|
| 193 |
with gr.Accordion("🧠 Model Thinking", open=False):
|
| 194 |
thinking_box = gr.Textbox(
|
|
|
|
| 213 |
lines=1
|
| 214 |
)
|
| 215 |
submit_chat_btn = gr.Button("Send", variant="primary", scale=1)
|
| 216 |
+
clear_chat_btn = gr.Button("Clear Chat", size="sm")
|
| 217 |
+
|
| 218 |
+
# Event handlers
|
| 219 |
+
def submit_question(question, transcript):
|
| 220 |
if not question or question.strip() == "":
|
| 221 |
yield "", [], ""
|
| 222 |
answer, thinking = transcript_qa(transcript, question)
|
|
|
|
| 225 |
{"role": "user", "content": question},
|
| 226 |
{"role": "assistant", "content": answer}
|
| 227 |
]
|
| 228 |
+
yield "", messages, thinking
|
| 229 |
|
| 230 |
+
|
| 231 |
+
# Add examples inside the left column container
|
| 232 |
+
with example_container:
|
| 233 |
gr.Examples(
|
| 234 |
examples=example_questions,
|
| 235 |
inputs=msg,
|
| 236 |
outputs=[msg, chatbot, thinking_box],
|
| 237 |
fn=lambda q: submit_question(q, transcript_state.value),
|
| 238 |
cache_examples=False,
|
| 239 |
+
label=""
|
| 240 |
+
)
|
| 241 |
|
| 242 |
+
transcribe_btn.click(
|
| 243 |
fn=disable_transcribe,
|
| 244 |
outputs=[transcribe_btn]
|
| 245 |
).then(
|
|
|
|
| 251 |
outputs=[transcript_output, transcript_state]
|
| 252 |
).then(
|
| 253 |
fn=enable_transcribe,
|
| 254 |
+
outputs=[transcribe_btn]
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
clear_audio_btn.click(
|
| 258 |
fn=lambda: None,
|
| 259 |
+
outputs=[audio_input]
|
| 260 |
+
)
|
| 261 |
|
| 262 |
+
clear_transcript_btn.click(
|
| 263 |
fn=lambda: ("", ""),
|
| 264 |
+
outputs=[transcript_output, transcript_state]
|
| 265 |
+
)
|
| 266 |
|
| 267 |
+
msg.submit(
|
| 268 |
fn=submit_question,
|
| 269 |
inputs=[msg, transcript_state],
|
| 270 |
+
outputs=[msg, chatbot, thinking_box]
|
| 271 |
+
)
|
| 272 |
|
| 273 |
+
submit_chat_btn.click(
|
| 274 |
fn=submit_question,
|
| 275 |
inputs=[msg, transcript_state],
|
| 276 |
+
outputs=[msg, chatbot, thinking_box]
|
| 277 |
+
)
|
| 278 |
|
| 279 |
+
clear_chat_btn.click(
|
| 280 |
fn=lambda: ([], ""),
|
| 281 |
+
outputs=[chatbot, thinking_box]
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Tab("Architecture"):
|
| 285 |
+
gr.Markdown("### Model Performance")
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
with gr.Column(scale=1):
|
| 289 |
+
gr.Markdown("""
|
| 290 |
+
#### Industry-Leading Performance
|
| 291 |
+
|
| 292 |
+
Canary ranks at the top of the HuggingFace Open ASR Leaderboard with an average word error rate (WER) of **6.67%**. It outperforms all other open-source models by a wide margin.
|
| 293 |
+
|
| 294 |
+
#### Training Data
|
| 295 |
+
|
| 296 |
+
Canary is trained on a combination of public and in-house data:
|
| 297 |
+
- **85K hours** of transcribed speech for speech recognition
|
| 298 |
+
- NVIDIA NeMo text translation models used to generate translations of the original transcripts in all supported languages
|
| 299 |
+
|
| 300 |
+
Despite using an order of magnitude less data, Canary outperforms the similarly sized Whisper-large-v3 and SeamlessM4T-Medium-v1 models on both transcription and translation tasks.
|
| 301 |
+
""")
|
| 302 |
+
|
| 303 |
+
with gr.Column(scale=1):
|
| 304 |
+
gr.HTML("""
|
| 305 |
+
<div style="text-align: center; padding: 20px;">
|
| 306 |
+
<img src="https://developer-blogs.nvidia.com/wp-content/uploads/2024/12/fig-6-nvidia-nemo-canary-architecture.png"
|
| 307 |
+
style="width: 100%; max-width: 500px; height: auto; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"
|
| 308 |
+
alt="NVIDIA Canary Architecture">
|
| 309 |
+
<p style="margin-top: 10px; color: #666; font-size: 14px;">NVIDIA Canary Architecture</p>
|
| 310 |
+
</div>
|
| 311 |
+
""")
|
| 312 |
+
|
| 313 |
+
gr.Markdown("### Benchmark Results")
|
| 314 |
+
|
| 315 |
+
with gr.Row():
|
| 316 |
+
with gr.Column():
|
| 317 |
+
gr.Markdown("""
|
| 318 |
+
#### Word Error Rate (WER) on MCV 16.1 Test Sets
|
| 319 |
+
On the MCV 16.1 test sets for English, Spanish, French, and German, Canary achieved a WER of **5.77** (lower is better).
|
| 320 |
+
|
| 321 |
+
| Model | Average WER |
|
| 322 |
+
|-------|-------------|
|
| 323 |
+
| **Canary** | **5.77** |
|
| 324 |
+
| SeamlessM4T-v2 | 6.41 |
|
| 325 |
+
| Whisper-large-v3 | 8.05 |
|
| 326 |
+
| SeamlessM4T-v1 | 9.48 |
|
| 327 |
+
""")
|
| 328 |
+
|
| 329 |
+
with gr.Column():
|
| 330 |
+
gr.Markdown("""
|
| 331 |
+
#### Translation BLEU Scores
|
| 332 |
+
|
| 333 |
+
**From English** (ES, FR, DE on FLEURS & MExpresso):
|
| 334 |
+
- Canary: **30.57** BLEU
|
| 335 |
+
|
| 336 |
+
**To English** (ES, FR, DE on FLEURS & CoVoST):
|
| 337 |
+
- Canary: **34.25** BLEU
|
| 338 |
+
|
| 339 |
+
*(Higher BLEU scores indicate better translation quality)*
|
| 340 |
+
""")
|
| 341 |
+
|
| 342 |
+
gr.Markdown("---")
|
| 343 |
+
|
| 344 |
+
gr.Markdown("""
|
| 345 |
+
### Canary Architecture Details
|
| 346 |
+
|
| 347 |
+
Canary is an encoder-decoder model built on NVIDIA innovations:
|
| 348 |
+
|
| 349 |
+
- **Encoder**: Fast-Conformer - an efficient Conformer architecture optimized for ~3x savings on compute and ~4x savings on memory
|
| 350 |
+
- **Processing**: Audio is processed as log-mel spectrogram features
|
| 351 |
+
- **Decoder**: Transformer decoder generates output text tokens auto-regressively
|
| 352 |
+
- **Control**: Special tokens control whether Canary performs transcription or translation
|
| 353 |
+
- **Tokenizer**: Concatenated tokenizer offers explicit control of output token space
|
| 354 |
+
|
| 355 |
+
#### Licensing
|
| 356 |
+
|
| 357 |
+
- **Model weights**: CC BY-NC 4.0 license (research-friendly, non-commercial)
|
| 358 |
+
- **Training code**: Apache 2.0 license (available from NeMo)
|
| 359 |
+
|
| 360 |
+
For more information about accessing Canary locally and building on top of it, see the [NVIDIA/NeMo GitHub repository](https://github.com/NVIDIA/NeMo).
|
| 361 |
+
""")
|
| 362 |
|
| 363 |
demo.queue()
|
| 364 |
demo.launch()
|
public/chart1.png
ADDED
|
Git LFS Details
|
public/chart2.png
ADDED
|
Git LFS Details
|
public/nvidia-speech.png
ADDED
|
Git LFS Details
|