import gradio as gr import numpy as np # Goal: Minimize def process( x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, ): y = ( (x1 - 2) ** 2 + 0.8 * x3 + 0.4 * (x6 + 1) ** 2 + (x12) ** 2 - 0.3 * (x18 - 2) ** 2 + x1 * x6 ) return y # defaults = np.random.uniform(0, 1, 20) iface = gr.Interface( fn=process, inputs=[ gr.Slider(minimum=0.0, maximum=1.0, value=defaults[k], label=f"x{k+1}") for k in range(20) ], outputs=gr.Number(process(*defaults), label="process function value (minimize)"), ) iface.launch()