Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,68 +3,227 @@ import time
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import List, Tuple, Dict
|
| 5 |
|
| 6 |
-
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
-
|
| 12 |
# === Utils ===
|
| 13 |
OUTDIR = Path("outputs")
|
| 14 |
OUTDIR.mkdir(parents=True, exist_ok=True)
|
| 15 |
|
| 16 |
|
| 17 |
def slug(s: str) -> str:
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
def save_wav(path: Path, sr: int, audio):
|
| 22 |
-
import numpy as np
|
| 23 |
-
import scipy.io.wavfile as wav
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
a = np.
|
| 29 |
-
a
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
wav.write(str(path), int(sr), a)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
|
| 41 |
# === Lazy model registry ===
|
| 42 |
MODEL_NAMES = {
|
| 43 |
-
"suno/bark-small": "bark",
|
| 44 |
-
"facebook/mms-tts-rus": "mms",
|
| 45 |
-
"facebook/seamless-m4t-v2-large": "seamless",
|
| 46 |
}
|
| 47 |
|
| 48 |
-
|
| 49 |
_model_cache: Dict[str, object] = {}
|
| 50 |
-
_device_hint = "auto"
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
|
| 55 |
def _load_bark():
|
| 56 |
-
from transformers import pipeline
|
| 57 |
-
pipe = pipeline("text-to-speech", model="suno/bark-small", device_map=_device_hint)
|
| 58 |
-
# Bark иногда не имеет pad_token_id
|
| 59 |
-
if getattr(pipe.model.config, "pad_token_id", None) is None:
|
| 60 |
-
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
out =
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import List, Tuple, Dict
|
| 5 |
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
import gradio as gr
|
| 9 |
|
|
|
|
| 10 |
# === Utils ===
|
| 11 |
OUTDIR = Path("outputs")
|
| 12 |
OUTDIR.mkdir(parents=True, exist_ok=True)
|
| 13 |
|
| 14 |
|
| 15 |
def slug(s: str) -> str:
|
| 16 |
+
"""Make a safe filename slug (ASCII, underscores)."""
|
| 17 |
+
if s is None:
|
| 18 |
+
s = ""
|
| 19 |
+
return "".join(c if c.isalnum() else "_" for c in s)[:80].strip("_")
|
| 20 |
|
| 21 |
|
| 22 |
def save_wav(path: Path, sr: int, audio):
|
| 23 |
+
import numpy as np
|
| 24 |
+
import scipy.io.wavfile as wav
|
| 25 |
+
|
| 26 |
+
if hasattr(audio, "detach"):
|
| 27 |
+
audio = audio.detach().cpu().numpy()
|
| 28 |
+
a = np.array(audio).astype(np.float32)
|
| 29 |
+
a = np.squeeze(a)
|
| 30 |
+
if a.ndim == 2 and a.shape[0] < a.shape[1]:
|
| 31 |
+
a = a.T
|
| 32 |
+
# normalize if needed
|
| 33 |
+
max_abs = np.max(np.abs(a)) if a.size else 1.0
|
| 34 |
+
if np.isfinite(max_abs) and max_abs > 1.0:
|
| 35 |
+
a = a / max_abs
|
| 36 |
+
wav.write(str(path), int(sr), a)
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
# === Lazy model registry ===
|
| 40 |
MODEL_NAMES = {
|
| 41 |
+
"suno/bark-small": "bark",
|
| 42 |
+
"facebook/mms-tts-rus": "mms",
|
| 43 |
+
"facebook/seamless-m4t-v2-large": "seamless",
|
| 44 |
}
|
| 45 |
|
|
|
|
| 46 |
_model_cache: Dict[str, object] = {}
|
| 47 |
+
_device_hint = "auto" # for pipelines; Seamless picks cpu/gpu inside
|
|
|
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
def _load_bark():
|
| 51 |
+
from transformers import pipeline
|
| 52 |
+
pipe = pipeline("text-to-speech", model="suno/bark-small", device_map=_device_hint)
|
| 53 |
+
# Bark иногда не имеет pad_token_id
|
| 54 |
+
if getattr(pipe.model.config, "pad_token_id", None) is None:
|
| 55 |
+
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
|
| 56 |
+
|
| 57 |
+
def generate(text: str) -> Tuple[int, np.ndarray]:
|
| 58 |
+
out = pipe(text)
|
| 59 |
+
return int(out["sampling_rate"]), np.asarray(out["audio"], dtype=np.float32)
|
| 60 |
+
|
| 61 |
+
return generate
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def _load_mms():
|
| 65 |
+
from transformers import pipeline
|
| 66 |
+
pipe = pipeline("text-to-speech", model="facebook/mms-tts-rus", device_map=_device_hint)
|
| 67 |
+
if getattr(pipe.model.config, "pad_token_id", None) is None:
|
| 68 |
+
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
|
| 69 |
+
|
| 70 |
+
def generate(text: str) -> Tuple[int, np.ndarray]:
|
| 71 |
+
out = pipe(text)
|
| 72 |
+
return int(out["sampling_rate"]), np.asarray(out["audio"], dtype=np.float32)
|
| 73 |
+
|
| 74 |
+
return generate
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def _load_seamless():
|
| 78 |
+
import torch
|
| 79 |
+
import numpy as np
|
| 80 |
+
from transformers import AutoProcessor
|
| 81 |
+
# ВНИМАНИЕ: импорт класса модели из подмодуля transformers
|
| 82 |
+
from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import (
|
| 83 |
+
SeamlessM4Tv2Model,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 87 |
+
proc = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
|
| 88 |
+
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large").to(device)
|
| 89 |
+
|
| 90 |
+
def generate(text: str) -> Tuple[int, np.ndarray]:
|
| 91 |
+
inputs = proc(text=text, src_lang="rus", return_tensors="pt")
|
| 92 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
audio = model.generate(**inputs, tgt_lang="rus")[0]
|
| 95 |
+
audio = audio.detach().cpu().numpy().squeeze().astype(np.float32)
|
| 96 |
+
return 16000, audio # Seamless выдаёт 16kHz
|
| 97 |
+
|
| 98 |
+
return generate
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def get_generator(kind: str):
|
| 102 |
+
if kind in _model_cache:
|
| 103 |
+
return _model_cache[kind]
|
| 104 |
+
if kind == "bark":
|
| 105 |
+
gen = _load_bark()
|
| 106 |
+
elif kind == "mms":
|
| 107 |
+
gen = _load_mms()
|
| 108 |
+
elif kind == "seamless":
|
| 109 |
+
gen = _load_seamless()
|
| 110 |
+
else:
|
| 111 |
+
raise ValueError(f"Unknown model kind: {kind}")
|
| 112 |
+
_model_cache[kind] = gen
|
| 113 |
+
return gen
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# === Inference ===
|
| 117 |
+
DEFAULT_PROMPTS = (
|
| 118 |
+
"Привет! Это короткий тест русского TTS.\n"
|
| 119 |
+
"Сегодня мы проверяем интонации, паузы и четкость дикции.\n"
|
| 120 |
+
"Немного сложнее: числа 3.14 и 2025 читаем правильно."
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def run_tts(
|
| 125 |
+
prompts_text: str,
|
| 126 |
+
split_lines: bool,
|
| 127 |
+
model_choice: str,
|
| 128 |
+
) -> tuple:
|
| 129 |
+
"""Main Gradio callback.
|
| 130 |
+
|
| 131 |
+
Returns:
|
| 132 |
+
files: list[str] — файловые пути для скачивания
|
| 133 |
+
df: pd.DataFrame — таблица с метаданными
|
| 134 |
+
last_audio: tuple[int, np.ndarray] | None — предпросмотр последнего файла
|
| 135 |
+
"""
|
| 136 |
+
text_items: List[str] = []
|
| 137 |
+
if split_lines:
|
| 138 |
+
for line in [s.strip() for s in prompts_text.splitlines()]:
|
| 139 |
+
if line:
|
| 140 |
+
text_items.append(line)
|
| 141 |
+
else:
|
| 142 |
+
text_items = [prompts_text.strip()] if prompts_text.strip() else []
|
| 143 |
+
|
| 144 |
+
if not text_items:
|
| 145 |
+
return [], pd.DataFrame(), None
|
| 146 |
+
|
| 147 |
+
kind = MODEL_NAMES[model_choice]
|
| 148 |
+
gen = get_generator(kind)
|
| 149 |
+
|
| 150 |
+
stamp_dir = OUTDIR / time.strftime("%Y%m%d-%H%M%S")
|
| 151 |
+
stamp_dir.mkdir(parents=True, exist_ok=True)
|
| 152 |
+
|
| 153 |
+
rows = []
|
| 154 |
+
file_paths: List[str] = []
|
| 155 |
+
last_audio_payload = None
|
| 156 |
+
|
| 157 |
+
for p in text_items:
|
| 158 |
+
t0 = time.time()
|
| 159 |
+
sr, audio = gen(p)
|
| 160 |
+
dt = time.time() - t0
|
| 161 |
+
path = stamp_dir / f"{slug(model_choice)}__{slug(p)}.wav"
|
| 162 |
+
save_wav(path, sr, audio)
|
| 163 |
+
rows.append(
|
| 164 |
+
{
|
| 165 |
+
"model": model_choice,
|
| 166 |
+
"prompt": p,
|
| 167 |
+
"file": str(path),
|
| 168 |
+
"sr": sr,
|
| 169 |
+
"gen_time_s": round(dt, 3),
|
| 170 |
+
}
|
| 171 |
+
)
|
| 172 |
+
file_paths.append(str(path))
|
| 173 |
+
last_audio_payload = (sr, audio)
|
| 174 |
+
|
| 175 |
+
df = pd.DataFrame(rows)
|
| 176 |
+
return file_paths, df, last_audio_payload
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# === UI ===
|
| 180 |
+
description_md = (
|
| 181 |
+
"""
|
| 182 |
+
Russian TTS Bench: выберите модель и введите один или несколько промптов.\
|
| 183 |
+
По умолчанию каждая строка — отдельный промпт. Результаты сохраняются в `outputs/…`.
|
| 184 |
+
|
| 185 |
+
**Модели:**
|
| 186 |
+
- `suno/bark-small` — небольшой мультиязычный TTS.
|
| 187 |
+
- `facebook/mms-tts-rus` — русская TTS из проекта MMS.
|
| 188 |
+
- `facebook/seamless-m4t-v2-large` — крупная модель перевода/говорения; тяжёлая для CPU.
|
| 189 |
+
|
| 190 |
+
⚠️ На CPU генерация может быть очень медленной, особенно для Seamless. Для комфортной работы выберите Space с GPU.
|
| 191 |
+
"""
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Blocks(title="Russian TTS Bench") as demo:
|
| 195 |
+
gr.Markdown("# 🗣️ Russian TTS Bench")
|
| 196 |
+
gr.Markdown(description_md)
|
| 197 |
+
|
| 198 |
+
with gr.Row():
|
| 199 |
+
model_choice = gr.Dropdown(
|
| 200 |
+
label="Модель",
|
| 201 |
+
choices=list(MODEL_NAMES.keys()),
|
| 202 |
+
value="suno/bark-small",
|
| 203 |
+
)
|
| 204 |
+
split_lines = gr.Checkbox(value=True, label="Одна строка = один промпт")
|
| 205 |
+
|
| 206 |
+
prompts = gr.Textbox(
|
| 207 |
+
label="Промпты",
|
| 208 |
+
value=DEFAULT_PROMPTS,
|
| 209 |
+
lines=6,
|
| 210 |
+
placeholder="Каждая строка — отдельный промпт…",
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
run_btn = gr.Button("Сгенерировать", variant="primary")
|
| 214 |
+
|
| 215 |
+
with gr.Row():
|
| 216 |
+
files = gr.Files(label="Файлы .wav для скачивания")
|
| 217 |
+
with gr.Row():
|
| 218 |
+
df_out = gr.Dataframe(label="Таблица результатов", interactive=False)
|
| 219 |
+
with gr.Row():
|
| 220 |
+
preview = gr.Audio(label="Предпросмотр последнего семпла", autoplay=False)
|
| 221 |
+
|
| 222 |
+
run_btn.click(
|
| 223 |
+
fn=run_tts,
|
| 224 |
+
inputs=[prompts, split_lines, model_choice],
|
| 225 |
+
outputs=[files, df_out, preview],
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if __name__ == "__main__":
|
| 229 |
+
demo.launch()
|