Satya Karthik R commited on
Commit
f2e41c7
·
1 Parent(s): 9d5329a

model.py added

Browse files
Files changed (1) hide show
  1. model.py +138 -0
model.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # backend/model.py
2
+ import cv2
3
+ import numpy as np
4
+ from transformers import pipeline
5
+ from PIL import Image, ImageOps
6
+ import torch
7
+ import io
8
+ import base64
9
+
10
+ class DualModelDetector:
11
+ def __init__(self):
12
+ print("⏳ Loading Models...")
13
+ device = 0 if torch.cuda.is_available() else -1
14
+
15
+ # MODEL 1: GenAI Detector
16
+ print(" 1. Loading GenAI Detector (v2.0)...")
17
+ self.genai_pipe = pipeline("image-classification", model="prithivMLmods/AI-vs-Deepfake-vs-Real-v2.0", device=device)
18
+
19
+ # MODEL 2: Face Deepfake Detector
20
+ print(" 2. Loading Face Deepfake Detector (v2)...")
21
+ self.face_pipe = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=device)
22
+
23
+ self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
24
+ print("✅ System Ready: Visual Debug Mode Active")
25
+
26
+ def img_to_base64(self, img):
27
+ """Converts a PIL Image to a Base64 string for the frontend"""
28
+ buffered = io.BytesIO()
29
+ img.save(buffered, format="JPEG")
30
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
31
+
32
+ def predict(self, image: Image.Image):
33
+ try:
34
+ if image.mode != "RGB":
35
+ image = image.convert("RGB")
36
+
37
+ # --- PHASE 1: GENAI DETECTION ---
38
+ genai_results = self.genai_pipe(image)
39
+ genai_top = genai_results[0]
40
+ genai_score = genai_top['score']
41
+ is_ai_art = "artificial" in genai_top['label'].lower()
42
+
43
+ genai_label = "Real Image"
44
+ if is_ai_art and genai_score > 0.6:
45
+ genai_label = "AI Generated Art"
46
+
47
+ genai_data = {
48
+ "is_detected": is_ai_art,
49
+ "confidence": genai_score,
50
+ "label": genai_label
51
+ }
52
+
53
+ # --- PHASE 2: FACE DETECTION ---
54
+ open_cv_image = np.array(image)
55
+ open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_RGB2BGR)
56
+ gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
57
+
58
+ faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
59
+
60
+ deepfake_data = {
61
+ "face_found": False,
62
+ "is_detected": False,
63
+ "confidence": 0.0,
64
+ "label": "No Face Found"
65
+ }
66
+
67
+ # Default to full image if no face (so we can still see what it saw)
68
+ target_face_image = image
69
+
70
+ if len(faces) > 0:
71
+ deepfake_data["face_found"] = True
72
+ sorted_faces = sorted(faces, key=lambda b: b[2] * b[3], reverse=True)
73
+ x, y, w, h = sorted_faces[0]
74
+
75
+ # Ratio Check logic
76
+ image_area = image.width * image.height
77
+ face_area = w * h
78
+ face_ratio = face_area / image_area
79
+
80
+ if face_ratio > 0.20:
81
+ # Case A: Large Face (Portrait) -> Use Full Image
82
+ target_face_image = image
83
+ else:
84
+ # Case B: Small Face -> Crop it
85
+ max_dim = max(w, h)
86
+ margin = int(max_dim * 0.6)
87
+ center_x = x + w // 2
88
+ center_y = y + h // 2
89
+ left = max(0, center_x - (max_dim + margin) // 2)
90
+ top = max(0, center_y - (max_dim + margin) // 2)
91
+ right = min(image.width, center_x + (max_dim + margin) // 2)
92
+ bottom = min(image.height, center_y + (max_dim + margin) // 2)
93
+ target_face_image = image.crop((left, top, right, bottom))
94
+
95
+ # Preprocess (Pad to Square)
96
+ target_face_image = ImageOps.pad(target_face_image, (224, 224), color="black")
97
+
98
+ # --- GENERATE DEBUG IMAGE ---
99
+ # This is the exact pixel data the AI is analyzing
100
+ debug_b64 = self.img_to_base64(target_face_image)
101
+
102
+ # Run Deepfake Model
103
+ face_results = self.face_pipe(target_face_image)
104
+ face_top = face_results[0]
105
+
106
+ is_deepfake = "fake" in face_top['label'].lower() or "deepfake" in face_top['label'].lower()
107
+ deepfake_score = face_top['score']
108
+
109
+ SAFE_THRESHOLD = 0.55
110
+ if is_deepfake and deepfake_score < SAFE_THRESHOLD:
111
+ is_deepfake = False
112
+ deepfake_score = 0.0
113
+
114
+ deepfake_data.update({
115
+ "is_detected": is_deepfake,
116
+ "confidence": deepfake_score,
117
+ "label": "Deepfake Face" if is_deepfake else "Real Face"
118
+ })
119
+
120
+ return {
121
+ "genai_analysis": genai_data,
122
+ "deepfake_analysis": deepfake_data,
123
+ "final_verdict": self._get_verdict(genai_data, deepfake_data),
124
+ "debug_image": debug_b64 # <--- SENDING IMAGE BACK
125
+ }
126
+
127
+ except Exception as e:
128
+ print(f"❌ Error: {e}")
129
+ import traceback
130
+ traceback.print_exc()
131
+ return {"error": str(e)}
132
+
133
+ def _get_verdict(self, genai, deepfake):
134
+ if deepfake['face_found'] and deepfake['is_detected']:
135
+ return "Deepfake Detected"
136
+ if genai['is_detected']:
137
+ return "AI Generated Image"
138
+ return "Real Image"