--- title: CognitiveKernel-Launchpad emoji: 🧠 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 5.44.1 app_file: app.py pinned: false license: mit hf_oauth: true hf_oauth_expiration_minutes: 480 --- # 🧠 CognitiveKernel-Launchpad β€” Hugging Face Space This Space hosts a Gradio UI for CognitiveKernel-Launchpad and is tailored for Hugging Face Spaces. - Original project (full source & docs): https://github.com/charSLee013/CognitiveKernel-Launchpad - Access: Sign in with Hugging Face is required (OAuth enabled via metadata above). ## πŸ” Access Control Only authenticated users can use this Space. Optionally restrict to org members by adding to the metadata: ``` hf_oauth_authorized_org: YOUR_ORG_NAME ``` ## πŸš€ How to Use (in this Space) 1) Click β€œSign in with Hugging Face”. 2) Ensure API secrets are set in Space β†’ Settings β†’ Secrets. 3) Ask a question in the input box and submit. ## πŸ”§ Required Secrets (Space Settings β†’ Secrets) - OPENAI_API_KEY: your provider key - OPENAI_API_BASE: e.g., https://api-inference.modelscope.cn/v1/chat/completions - OPENAI_API_MODEL: e.g., Qwen/Qwen3-235B-A22B-Instruct-2507 Optional: - SEARCH_BACKEND: duckduckgo | google (default: duckduckgo) - WEB_AGENT_MODEL / WEB_MULTIMODAL_MODEL: override web models ## πŸ–₯️ Runtime Notes - CPU is fine; GPU optional. - Playwright browsers are prepared automatically at startup. - To persist files/logs, enable Persistent Storage (uses /data). β€” # 🧠 CognitiveKernel-Launchpad β€” Open Framework for Deep Research Agents & Agent Foundation Models > πŸŽ“ **Academic Research & Educational Use Only** β€” No Commercial Use > πŸ“„ [Paper (arXiv:2508.00414)](https://arxiv.org/abs/2508.00414) | πŸ‡¨πŸ‡³ [δΈ­ζ–‡ζ–‡ζ‘£](README_zh.md) | πŸ“œ [LICENSE](LICENSE.txt) [![Python 3.10+](https://img.shields.io/badge/Python-3.10%2B-blue)](https://www.python.org/) [![arXiv](https://img.shields.io/badge/arXiv-2508.00414-b31b1b.svg)](https://arxiv.org/abs/2508.00414) --- ## 🌟 Why CognitiveKernel-Launchpad? This research-only fork is derived from Tencent's original CognitiveKernel-Pro and is purpose-built for inference-time usage. It removes complex training/SFT and heavy testing pipelines, focusing on a clean reasoning runtime that is easy to deploy for distributed inference. In addition, it includes a lightweight Gradio web UI for convenient usage. --- ## πŸš€ Quick Start ### 1. Install (No GPU Required) ```bash git clone https://github.com/charSLee013/CognitiveKernel-Launchpad.git cd CognitiveKernel-Launchpad python -m venv .venv source .venv/bin/activate # Windows: .venv\Scripts\activate pip install -r requirements.txt ``` ### 2. Set Environment (Minimal Setup) ```bash export OPENAI_API_KEY="sk-..." export OPENAI_API_BASE="https://api.openai.com/v1" export OPENAI_API_MODEL="gpt-4o-mini" ``` ### 3. Run a Single Question ```bash python -m ck_pro "What is the capital of France?" ``` βœ… That’s it! You’re running a deep research agent. --- ## πŸ› οΈ Core Features ### πŸ–₯️ CLI Interface ```bash python -m ck_pro \ --config config.toml \ --input questions.txt \ --output answers.txt \ --interactive \ --verbose ``` | Flag | Description | |---------------|--------------------------------------| | `-c, --config`| TOML config path (optional) | | `-i, --input` | Batch input file (one Q per line) | | `-o, --output`| Output answers to file | | `--interactive`| Start interactive Q&A session | | `-v, --verbose`| Show reasoning steps & timing | --- ### βš™οΈ Configuration (config.toml) > `TOML > Env Vars > Defaults` Use the examples in this repo: - Minimal config: [config.minimal.toml](config.minimal.toml) β€” details in [CONFIG_EXAMPLES.md](CONFIG_EXAMPLES.md) - Comprehensive config: [config.comprehensive.toml](config.comprehensive.toml) β€” full explanation in [CONFIG_EXAMPLES.md](CONFIG_EXAMPLES.md) #### πŸš€ Recommended Configuration Based on the current setup, here's the recommended configuration for optimal performance: ```toml # Core Agent Configuration [ck.model] call_target = "https://api-inference.modelscope.cn/v1/chat/completions" api_key = "your-modelscope-api-key-here" # Replace with your actual key model = "Qwen/Qwen3-235B-A22B-Instruct-2507" [ck.model.extract_body] temperature = 0.6 max_tokens = 8192 # Web Agent Configuration (for web browsing tasks) [web] max_steps = 20 use_multimodal = "auto" # Automatically use multimodal when needed [web.model] call_target = "https://api-inference.modelscope.cn/v1/chat/completions" api_key = "your-modelscope-api-key-here" # Replace with your actual key model = "moonshotai/Kimi-K2-Instruct" request_timeout = 600 max_retry_times = 5 max_token_num = 8192 [web.model.extract_body] temperature = 0.0 top_p = 0.95 max_tokens = 8192 # Multimodal Web Agent (for visual tasks) [web.model_multimodal] call_target = "https://api-inference.modelscope.cn/v1/chat/completions" api_key = "your-modelscope-api-key-here" # Replace with your actual key model = "Qwen/Qwen2.5-VL-72B-Instruct" request_timeout = 600 max_retry_times = 5 max_token_num = 8192 [web.model_multimodal.extract_body] temperature = 0.0 top_p = 0.95 max_tokens = 8192 # Search Configuration [search] backend = "duckduckgo" # Recommended: reliable and no API key required ``` #### πŸ”‘ API Key Setup 1. **Get ModelScope API Key**: Visit [ModelScope](https://www.modelscope.cn/) to obtain your API key 2. **Replace placeholders**: Update all `your-modelscope-api-key-here` with your actual API key 3. **Alternative**: Use environment variables: ```bash export OPENAI_API_KEY="your-actual-key" ``` #### πŸ“‹ Model Selection Rationale - **Main Agent**: `Qwen3-235B-A22B-Instruct-2507` - Latest high-performance reasoning model - **Web Agent**: `Kimi-K2-Instruct` - Optimized for web interaction tasks - **Multimodal**: `Qwen2.5-VL-72B-Instruct` - Advanced vision-language capabilities For all other options, see [CONFIG_EXAMPLES.md](CONFIG_EXAMPLES.md). --- ### πŸ“Š GAIA Benchmark Evaluation Evaluate your agent on the GAIA benchmark: ```bash python -m gaia.cli.simple_validate \ --data gaia_val.jsonl \ --level all \ --count 10 \ --output results.jsonl ``` β†’ Outputs detailed performance summary & per-task results. --- ### 🌐 Gradio Web UI Launch a user-friendly web interface: ```bash python -m ck_pro.gradio_app --host 0.0.0.0 --port 7860 ``` β†’ Open `http://localhost:7860` in your browser. Note: It is recommended to install Playwright browsers (or install them if you encounter related errors). On Linux you may also need to run playwright install-deps. Note: It is recommended to install Playwright browsers (or install them if you encounter related errors): `python -m playwright install` (Linux may also require `python -m playwright install-deps`). --- ### πŸ“‚ Logging - Console: `INFO` level by default - Session logs: `logs/ck_session_*.log` - Configurable via `[logging]` section in TOML --- ## 🧩 Architecture Highlights - **Modular Design**: Web, File, Code, Reasoning modules - **Fallback Mechanism**: HTTP API β†’ Playwright browser automation - **Reflection & Voting**: Novel test-time strategies for improved accuracy - **Extensible**: Easy to plug in new models, tools, or datasets --- ## πŸ“œ License & Attribution This is a research-only fork of **Tencent’s CognitiveKernel-Pro**. πŸ”— Original: https://github.com/Tencent/CognitiveKernel-Pro > ⚠️ **Strictly for academic research and educational purposes. Commercial use is prohibited.** > See `LICENSE.txt` for full terms.