import os, glob import gradio as gr from PIL import Image import torch import torchvision.transforms as transforms import torch.nn.functional as F from archs import create_model, resume_model # -------- Detect folders & images (assets/) -------- IMG_EXTS = (".png", ".jpg", ".jpeg", ".bmp", ".webp") def list_subfolders(base="assets"): """Return a sorted list of immediate subfolders inside base.""" if not os.path.isdir(base): return [] subs = [d for d in sorted(os.listdir(base)) if os.path.isdir(os.path.join(base, d))] return subs def list_images(folder): """Return full paths of images inside assets/.""" paths = sorted(glob.glob(os.path.join("assets", folder, "*"))) return [p for p in paths if p.lower().endswith(IMG_EXTS)] # -------- Folder/Gallery interactions -------- def update_gallery(folder): """Given a folder name, return the gallery items (list of image paths) and store the same list in state.""" files = list_images(folder) return gr.update(value=files, visible=True), files # (gallery_update, state_list) def load_from_gallery(evt: gr.SelectData, current_files): """On gallery click, load the clicked image path into the input image.""" idx = evt.index if not current_files or idx is None or idx >= len(current_files): return gr.update() path = current_files[idx] return Image.open(path) # ----------------------------- # Model # ----------------------------- PATH_MODEL = './DeMoE.pt' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_opt = { 'name': 'DeMoE', 'img_channels': 3, 'width': 32, 'middle_blk_num': 2, 'enc_blk_nums': [2, 2, 2, 2], 'dec_blk_nums': [2, 2, 2, 2], 'num_experts': 5, 'k_used': 1 } pil_to_tensor = transforms.ToTensor() tensor_to_pil = transforms.ToPILImage() # Create and load model weights model = create_model(model_opt, device) _ = torch.load(PATH_MODEL, map_location=device, weights_only=False) # keep compatibility with different checkpoints model = resume_model(model, PATH_MODEL, device) def pad_tensor(tensor, multiple=16): """Pad tensor so that H and W are multiples of `multiple` (default 16).""" _, _, H, W = tensor.shape pad_h = (multiple - H % multiple) % multiple pad_w = (multiple - W % multiple) % multiple tensor = F.pad(tensor, (0, pad_w, 0, pad_h), value=0) return tensor # ----------------------------- # UI / Inference # ----------------------------- title = 'DeMoE 🌪️​' description = ''' >**Abstract**: Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also shows promising generalization to unseen blur scenarios, particularly when leveraging appropriate expert selection. [Daniel Feijoo](https://github.com/danifei), Paula Garrido-Mellado, Jaesung Rim, Álvaro García, Marcos V. Conde [Fundación Cidaut](https://cidaut.ai/) Available code at [github](https://github.com/cidautai/DeMoE). More information on the [Arxiv paper](https://arxiv.org/pdf/2508.06228). > **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. **This demo expects an image with some Low-Light degradations.**
''' # Visible tasks in the UI TASK_LABELS = ["Deblur", "Low-light", "movement", "defocus", "all"] # Map pretty label -> internal task code used by the model LABEL_TO_TASK = { "Deblur": "global", # change to what your model expects for general deblurring "Low-light": "lowlight", "movement": "local", # if your model supports local motion blur "defocus": "defocus", # if your model supports defocus blur "all": "all", # if your model supports all types at once } css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ # Example lists per folder under ./assets (kept simple, no helpers) exts = (".png", ".jpg", ".jpeg", ".bmp", ".webp") def list_basenames(folder): """Return [[basename, task_label], ...] for gr.Examples using examples_dir.""" paths = sorted(glob.glob(f"assets/{folder}/*")) basenames = [os.path.basename(p) for p in paths if p.lower().endswith(exts)] # Default task per folder (tweak as you like) default_task = "Low-light" if folder == "lowlight" else "Deblur" return [[name, default_task] for name in basenames] examples_agentir = list_basenames("AgentIR") examples_allweather = list_basenames("allweather") examples_amac = list_basenames("amac_examples") examples_deblur = list_basenames("deblur") examples_gestures = list_basenames("gestures") examples_lowlight = list_basenames("lowlight") examples_monolith = list_basenames("monolith") examples_superres = list_basenames("superres") def process_img(image, task_label='auto'): """Main inference: converts PIL -> tensor, pads, runs the model with selected task, clamps, crops, returns PIL.""" task = LABEL_TO_TASK.get(task_label, 'auto') # default to lowlight if something unexpected arrives tensor = pil_to_tensor(image).unsqueeze(0).to(device) _, _, H, W = tensor.shape tensor = pad_tensor(tensor) with torch.no_grad(): output = model(tensor, task) output = torch.clamp(output, 0., 1.) output = output[:, :, :H, :W].squeeze(0) return tensor_to_pil(output) # ----------------------------- # Gradio Blocks layout # ----------------------------- with gr.Blocks(css=css, title=title) as demo: gr.Markdown(f"# {title}\n\n{description}") with gr.Row(): # Input image and the task selector (Radio) inp_img = gr.Image(type='pil', label='input') # Output image and action button out_img = gr.Image(type='pil', label='output') task_selector = gr.Radio( choices=TASK_LABELS, value="auto", label="Tipo de blur a corregir" ) btn = gr.Button("Corregir", variant="primary") # Connect the button to the inference function btn.click( fn=process_img, inputs=[inp_img, task_selector], outputs=[out_img] ) # Examples grouped by folder (each item loads image + task automatically) gr.Markdown("## Ejemplos (assets)") with gr.Row(): # List folders found in ./assets folders = list_subfolders("assets") folder_radio = gr.Radio(choices=folders, label="Carpetas en assets", interactive=True) gallery = gr.Gallery( label="Imágenes de la carpeta seleccionada", visible=False, allow_preview=True, columns=6, height=320, ) # State holds the current file list shown in the gallery (to resolve clicks) current_files_state = gr.State([]) # When changing folder -> update gallery and state folder_radio.change( fn=update_gallery, inputs=folder_radio, outputs=[gallery, current_files_state] ) # When clicking a thumbnail -> load it into the input image gallery.select( fn=load_from_gallery, inputs=[current_files_state], outputs=inp_img ) if __name__ == '__main__': # Explicit host/port and no SSR are friendly to Spaces demo.launch(show_error=True, server_name="0.0.0.0", server_port=7864, ssr_mode=False)