Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import PreTrainedTokenizerFast | |
| import os | |
| # ----------------------------- | |
| # Load tokenizer | |
| # ----------------------------- | |
| tokenizer_path = "./Dave/tokenizer.json" | |
| tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path) | |
| # ----------------------------- | |
| # Load custom model | |
| # ----------------------------- | |
| from dave_model import SimpleTransformer # put your model class in dave_model.py | |
| vocab_size = tokenizer.vocab_size | |
| model_path = "./Dave/pytorch_model.bin" | |
| model = SimpleTransformer(vocab_size=vocab_size) | |
| model.load_state_dict(torch.load(model_path, map_location="cpu")) | |
| model.eval() | |
| # ----------------------------- | |
| # Inference function | |
| # ----------------------------- | |
| def generate_response(prompt): | |
| input_ids = torch.tensor([tokenizer.encode(prompt).ids]) | |
| with torch.no_grad(): | |
| output = model(input_ids) | |
| predicted_ids = output.argmax(-1)[0].tolist() | |
| response = tokenizer.decode(predicted_ids) | |
| return response | |
| # ----------------------------- | |
| # Gradio interface | |
| # ----------------------------- | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(lines=2, placeholder="Type your prompt here..."), | |
| outputs="text", | |
| title="Dave β Fully Custom AI", | |
| description="Interact with your fully custom AI model." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |