File size: 42,442 Bytes
c64c726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
"""
Web-based Diamond CSGO AI Player for Hugging Face Spaces
Uses FastAPI + WebSocket for real-time keyboard input and game streaming
"""

import asyncio
import base64
import io
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Optional, Set

import cv2
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from hydra import compose, initialize
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from PIL import Image

# Import your modules
from src.agent import Agent
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
from src.envs import WorldModelEnv
from src.game.web_play_env import WebPlayEnv
from config_web import web_config

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables
app = FastAPI(title="Diamond CSGO AI Player")
connected_clients: Set[WebSocket] = set()

class WebKeyMap:
    """Map web key codes to pygame-like keys for CSGO actions"""
    WEB_TO_CSGO = {
        'KeyW': 'w',
        'KeyA': 'a', 
        'KeyS': 's',
        'KeyD': 'd',
        'Space': 'space',
        'ControlLeft': 'left ctrl',
        'ShiftLeft': 'left shift',
        'Digit1': '1',
        'Digit2': '2', 
        'Digit3': '3',
        'KeyR': 'r',
        'ArrowUp': 'camera_up',
        'ArrowDown': 'camera_down',
        'ArrowLeft': 'camera_left',
        'ArrowRight': 'camera_right'
    }

class WebGameEngine:
    """Web-compatible game engine that replaces pygame functionality"""
    
    def __init__(self):
        self.play_env: Optional[WebPlayEnv] = None
        self.obs = None
        self.running = False
        self.game_started = False
        self.fps = 30  # Display FPS
        self.ai_fps = 10  # AI inference FPS (slower than display for efficiency)
        self.frame_count = 0
        self.ai_frame_count = 0
        self.last_ai_time = 0
        self.start_time = 0  # Track when AI started for proper FPS calculation
        self.pressed_keys: Set[str] = set()
        self.mouse_x = 0
        self.mouse_y = 0
        self.l_click = False
        self.r_click = False
        self.should_reset = False
        self.cached_obs = None  # Cache last observation for frame skipping
        self.first_inference_done = False  # Track if first inference completed
        self.models_ready = False  # Track if models are loaded
        self.download_progress = 0  # Track download progress (0-100)
        self.loading_status = "Initializing..."  # Loading status message
        import time
        self.time_module = time
    
    async def _download_model_async(self, url, filepath):
        """Download model asynchronously with progress tracking"""
        import asyncio
        import concurrent.futures
        import urllib.request
        import os
        
        def download_with_progress():
            """Download function that runs in thread pool"""
            def progress_hook(block_num, block_size, total_size):
                if total_size > 0:
                    progress = min(100, (block_num * block_size * 100) / total_size)
                    self.download_progress = int(progress)
                    if progress % 10 == 0:  # Log every 10%
                        logger.info(f"Download progress: {self.download_progress}%")
            
            urllib.request.urlretrieve(url, filepath, reporthook=progress_hook)
            self.download_progress = 100
            
        # Run download in thread pool to avoid blocking
        loop = asyncio.get_event_loop()
        with concurrent.futures.ThreadPoolExecutor() as executor:
            await loop.run_in_executor(executor, download_with_progress)
        
        logger.info("Model download completed!")
        
    async def initialize_models(self):
        """Initialize the AI models and environment"""
        try:
            import torch
            logger.info("Initializing models...")
            
            # Setup environment and paths
            web_config.setup_environment_variables()
            web_config.create_default_configs()
            
            config_path = web_config.get_config_path()
            logger.info(f"Using config path: {config_path}")
            
            # Convert to relative path for Hydra
            import os
            relative_config_path = os.path.relpath(config_path)
            logger.info(f"Relative config path: {relative_config_path}")
                
            with initialize(version_base="1.3", config_path=relative_config_path):
                cfg = compose(config_name="trainer")
            
            # Override config for deployment
            cfg.agent = OmegaConf.load(config_path / "agent" / "csgo.yaml")
            cfg.env = OmegaConf.load(config_path / "env" / "csgo.yaml") 
            
            # Use CPU if no GPU available (for free HF spaces)
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            logger.info(f"Using device: {device}")
            
            # Load model checkpoint
            checkpoint_path = web_config.get_checkpoint_path()
            if not checkpoint_path.exists():
                logger.warning(f"No checkpoint found at {checkpoint_path} - using dummy mode")
                self._init_dummy_mode()
                return True
            
            # Get spawn directory
            spawn_dir = web_config.get_spawn_dir()
            
            # Initialize agent
            num_actions = cfg.env.num_actions
            agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
            
            # Try to load checkpoint (remote or local)
            try:
                # First try to download from Hugging Face Hub using direct URL
                try:
                    import torch.hub
                    import os
                    logger.info("Downloading model from Hugging Face Hub...")
                    
                    # Direct download URL (change 'blob' to 'resolve' for direct download)
                    model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
                    
                    # Download to cache directory
                    cache_dir = "./cache"
                    os.makedirs(cache_dir, exist_ok=True)
                    model_cache_path = os.path.join(cache_dir, "agent_epoch_00003.pt")
                    
                    # Download if not cached
                    if not os.path.exists(model_cache_path):
                        logger.info(f"Downloading 1.53GB model to {model_cache_path}...")
                        self.loading_status = "Downloading AI model from Hugging Face Hub..."
                        
                        # Download with progress tracking in a separate thread
                        await self._download_model_async(model_url, model_cache_path)
                    else:
                        logger.info(f"Using cached model from {model_cache_path}")
                        self.loading_status = "Loading cached model..."
                        
                    # Use the agent's load method which expects a file path
                    self.loading_status = "Loading model weights..."
                    agent.load(model_cache_path)
                    logger.info(f"Successfully loaded checkpoint from HF Hub")
                    
                except Exception as hub_error:
                    logger.warning(f"Failed to download from HF Hub: {hub_error}")
                    
                    # Fallback to local checkpoint if available
                    if checkpoint_path.exists():
                        logger.info(f"Falling back to local checkpoint: {checkpoint_path}")
                        agent.load(checkpoint_path)
                        logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
                    else:
                        raise FileNotFoundError("No model checkpoint available (local or remote)")
                        
            except Exception as e:
                logger.error(f"Failed to load any checkpoint: {e}")
                self._init_dummy_mode()
                return True
            
            # Initialize world model environment
            try:
                sl = cfg.agent.denoiser.inner_model.num_steps_conditioning
                if agent.upsampler is not None:
                    sl = max(sl, cfg.agent.upsampler.inner_model.num_steps_conditioning)
                wm_env_cfg = instantiate(cfg.world_model_env, num_batches_to_preload=1)
                wm_env = WorldModelEnv(agent.denoiser, agent.upsampler, agent.rew_end_model, 
                                     spawn_dir, 1, sl, wm_env_cfg, return_denoising_trajectory=True)
                
                # Create play environment
                self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
                
                # Model compilation causes 10-30s delay on first inference, so make it optional
                # You can enable it by setting ENABLE_TORCH_COMPILE=1 environment variable
                import os
                if device.type == "cuda" and os.getenv("ENABLE_TORCH_COMPILE", "0") == "1":
                    logger.info("Compiling models for faster inference (will cause delay on first inference)...")
                    try:
                        wm_env.predict_next_obs = torch.compile(wm_env.predict_next_obs, mode="reduce-overhead")
                        if wm_env.upsample_next_obs is not None:
                            wm_env.upsample_next_obs = torch.compile(wm_env.upsample_next_obs, mode="reduce-overhead")
                        logger.info("Model compilation enabled successfully!")
                    except Exception as e:
                        logger.warning(f"Model compilation failed: {e}")
                else:
                    logger.info("Model compilation disabled (faster startup). Set ENABLE_TORCH_COMPILE=1 to enable.")
                
                # Reset environment
                self.obs, _ = self.play_env.reset()
                self.cached_obs = self.obs  # Initialize cache
                
                logger.info("Models initialized successfully!")
                logger.info(f"Initial observation shape: {self.obs.shape if self.obs is not None else 'None'}")
                self.models_ready = True
                self.loading_status = "Ready!"
                return True
                
            except Exception as e:
                logger.error(f"Failed to initialize world model environment: {e}")
                self._init_dummy_mode()
                self.models_ready = True
                self.loading_status = "Using dummy mode"
                return True
            
        except Exception as e:
            logger.error(f"Failed to initialize models: {e}")
            import traceback
            traceback.print_exc()
            self._init_dummy_mode()
            self.models_ready = True
            self.loading_status = "Error - using dummy mode"
            return True
    
    def _init_dummy_mode(self):
        """Initialize dummy mode for testing without models"""
        logger.info("Initializing dummy mode...")
        
        # Create a test observation
        height, width = 150, 600
        img_array = np.zeros((height, width, 3), dtype=np.uint8)
        
        # Add test pattern
        for y in range(height):
            for x in range(width):
                img_array[y, x, 0] = (x % 256)  # Red gradient
                img_array[y, x, 1] = (y % 256)  # Green gradient  
                img_array[y, x, 2] = ((x + y) % 256)  # Blue pattern
        
        # Convert to torch tensor in expected format [-1, 1]
        tensor = torch.from_numpy(img_array).float().permute(2, 0, 1)  # CHW format
        tensor = tensor.div(255).mul(2).sub(1)  # Convert to [-1, 1] range
        tensor = tensor.unsqueeze(0)  # Add batch dimension
        
        self.obs = tensor
        self.play_env = None  # No real environment in dummy mode
        logger.info("Dummy mode initialized with test pattern")
    
    
    def step_environment(self):
        """Step the environment with current input state (with intelligent frame skipping)"""
        if self.play_env is None:
            # Dummy mode - just return current observation
            return self.obs, 0.0, False, False, {"mode": "dummy"}
            
        try:
            # Check if reset is requested
            if self.should_reset:
                self.reset_environment()
                self.should_reset = False
                self.last_ai_time = self.time_module.time()  # Reset AI timer
                return self.obs, 0.0, False, False, {"reset": True}
            
            # Intelligent frame skipping: only run AI inference at target FPS
            current_time = self.time_module.time()
            time_since_last_ai = current_time - self.last_ai_time
            should_run_ai = time_since_last_ai >= (1.0 / self.ai_fps)
            
            if should_run_ai:
                # Show loading indicator for first inference (can be slow)
                if not self.first_inference_done:
                    logger.info("Running first AI inference (may take 5-15 seconds)...")
                
                # Run AI inference
                inference_start = self.time_module.time()
                next_obs, reward, done, truncated, info = self.play_env.step_from_web_input(
                    pressed_keys=self.pressed_keys,
                    mouse_x=self.mouse_x,
                    mouse_y=self.mouse_y,
                    l_click=self.l_click,
                    r_click=self.r_click
                )
                inference_time = self.time_module.time() - inference_start
                
                # Log first inference completion
                if not self.first_inference_done:
                    self.first_inference_done = True
                    logger.info(f"First AI inference completed in {inference_time:.2f}s - subsequent inferences will be faster!")
                
                # Cache the new observation and update timing
                self.cached_obs = next_obs
                self.last_ai_time = current_time
                self.ai_frame_count += 1
                
                # Add AI performance info
                info = info or {}
                info["ai_inference"] = True
                
                # Calculate proper AI FPS: frames / elapsed time since start
                elapsed_time = current_time - self.start_time
                if elapsed_time > 0 and self.ai_frame_count > 0:
                    ai_fps = self.ai_frame_count / elapsed_time
                    # Cap at reasonable maximum (shouldn't exceed 100 FPS for AI inference)
                    info["ai_fps"] = min(ai_fps, 100.0)
                else:
                    info["ai_fps"] = 0
                
                info["inference_time"] = inference_time
                
                return next_obs, reward, done, truncated, info
            else:
                # Use cached observation for smoother display without AI overhead
                obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
                
                # Calculate AI FPS for cached frames too
                elapsed_time = current_time - self.start_time
                if elapsed_time > 0 and self.ai_frame_count > 0:
                    ai_fps = min(self.ai_frame_count / elapsed_time, 100.0)  # Cap at 100 FPS
                else:
                    ai_fps = 0
                
                return obs_to_return, 0.0, False, False, {"cached": True, "ai_fps": ai_fps}
            
        except Exception as e:
            logger.error(f"Error stepping environment: {e}")
            obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
            return obs_to_return, 0.0, False, False, {"error": str(e)}
    
    def reset_environment(self):
        """Reset the environment"""
        try:
            if self.play_env is not None:
                self.obs, _ = self.play_env.reset()
                self.cached_obs = self.obs  # Update cache
                logger.info("Environment reset successfully")
            else:
                # Dummy mode - recreate test pattern
                self._init_dummy_mode()
                self.cached_obs = self.obs  # Update cache
                logger.info("Dummy environment reset")
        except Exception as e:
            logger.error(f"Error resetting environment: {e}")
    
    def request_reset(self):
        """Request environment reset on next step"""
        self.should_reset = True
        logger.info("Environment reset requested")
    
    def start_game(self):
        """Start the game"""
        self.game_started = True
        self.start_time = self.time_module.time()  # Reset start time for FPS calculation
        self.ai_frame_count = 0  # Reset AI frame count
        logger.info("Game started")
    
    def pause_game(self):
        """Pause/stop the game"""
        self.game_started = False
        logger.info("Game paused")
    
    def obs_to_base64(self, obs: torch.Tensor) -> str:
        """Convert observation tensor to base64 image for web display"""
        if obs is None:
            return ""
            
        try:
            # Convert tensor to PIL Image
            if obs.ndim == 4 and obs.size(0) == 1:
                img_array = obs[0].add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
            else:
                img_array = obs.add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
            
            img = Image.fromarray(img_array)
            
            # Resize for web display to match canvas size (optimized)
            img = img.resize((600, 150), Image.NEAREST)  # NEAREST is faster than BICUBIC
            
            # Optimized base64 conversion with JPEG for better compression/speed
            buffer = io.BytesIO()
            img.save(buffer, format='JPEG', quality=85, optimize=True)  # JPEG is faster than PNG
            img_str = base64.b64encode(buffer.getvalue()).decode()
            return f"data:image/jpeg;base64,{img_str}"
            
        except Exception as e:
            logger.error(f"Error converting observation to base64: {e}")
            return ""
    
    async def game_loop(self):
        """Main game loop that runs continuously"""
        self.running = True
        
        while self.running:
            try:
                # Check if models are ready
                if not self.models_ready:
                    # Send loading status to clients
                    if connected_clients:
                        loading_data = {
                            'type': 'loading',
                            'status': self.loading_status,
                            'progress': self.download_progress,
                            'ready': False
                        }
                        disconnected = set()
                        for client in connected_clients.copy():
                            try:
                                await client.send_text(json.dumps(loading_data))
                            except:
                                disconnected.add(client)
                        connected_clients.difference_update(disconnected)
                    
                    await asyncio.sleep(0.5)  # Check every 500ms during loading
                    continue
                
                # Always send frames, but only step environment if game is started
                should_send_frame = True
                
                if not self.game_started:
                    # Game not started - just send current observation without stepping
                    if self.obs is not None and connected_clients:
                        should_send_frame = True
                    else:
                        should_send_frame = False
                    await asyncio.sleep(0.1)
                else:
                    # Game is started - step environment
                    if self.play_env is None:
                        await asyncio.sleep(0.1)
                        continue
                    
                    # Step environment with current input state
                    next_obs, reward, done, truncated, info = self.step_environment()
                    
                    if done or truncated:
                        # Auto-reset when episode ends
                        self.reset_environment()
                    else:
                        self.obs = next_obs
                
                # Send frame to all connected clients (regardless of game state)
                if should_send_frame and connected_clients and self.obs is not None:
                    # Set default values for when game isn't running
                    if not self.game_started:
                        reward = 0.0
                        info = {"waiting": True}
                    # If game is started, reward and info should be set above
                    
                    # Convert observation to base64
                    image_data = self.obs_to_base64(self.obs)
                    
                    # Debug logging for first few frames
                    if self.frame_count < 5:
                        logger.info(f"Frame {self.frame_count}: obs shape={self.obs.shape if self.obs is not None else 'None'}, "
                                  f"image_data_length={len(image_data) if image_data else 0}, "
                                  f"game_started={self.game_started}")
                    
                    frame_data = {
                        'type': 'frame',
                        'image': image_data,
                        'frame_count': self.frame_count,
                        'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
                        'info': str(info) if info else "",
                        'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
                        'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
                    }
                    
                    # Send to all connected clients
                    disconnected = set()
                    for client in connected_clients.copy():
                        try:
                            await client.send_text(json.dumps(frame_data))
                        except:
                            disconnected.add(client)
                    
                    # Remove disconnected clients
                    connected_clients.difference_update(disconnected)
                
                self.frame_count += 1
                await asyncio.sleep(1.0 / self.fps)  # Control FPS
                
            except Exception as e:
                logger.error(f"Error in game loop: {e}")
                await asyncio.sleep(0.1)

# Global game engine instance
game_engine = WebGameEngine()

@app.on_event("startup")
async def startup_event():
    """Initialize models when the app starts"""
    # Start the game loop immediately (it will handle loading state)
    asyncio.create_task(game_engine.game_loop())
    
    # Initialize models in background (non-blocking)
    asyncio.create_task(game_engine.initialize_models())

@app.get("/", response_class=HTMLResponse)
async def get_homepage():
    """Serve the main game interface"""
    html_content = """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Diamond CSGO AI Player</title>
        <style>
            body {
                margin: 0;
                padding: 20px;
                background: #1a1a1a;
                color: white;
                font-family: 'Courier New', monospace;
                text-align: center;
            }
            #gameCanvas {
                border: 2px solid #00ff00;
                background: #000;
                margin: 20px auto;
                display: block;
            }
            #controls {
                margin: 20px;
                display: grid;
                grid-template-columns: 1fr 1fr;
                gap: 20px;
                max-width: 800px;
                margin: 20px auto;
            }
            .control-section {
                background: #2a2a2a;
                padding: 15px;
                border-radius: 8px;
                border: 1px solid #444;
            }
            .key-display {
                background: #333;
                border: 1px solid #555;
                padding: 5px 10px;
                margin: 2px;
                border-radius: 4px;
                display: inline-block;
                min-width: 30px;
            }
            .key-pressed {
                background: #00ff00;
                color: #000;
            }
            #status {
                margin: 10px;
                padding: 10px;
                background: #2a2a2a;
                border-radius: 4px;
            }
            .info {
                color: #00ff00;
                margin: 5px 0;
            }
        </style>
    </head>
    <body>
        <h1>๐ŸŽฎ Diamond CSGO AI Player</h1>
        <p><strong>Click the game canvas to start playing!</strong> Use ESC to pause, Enter to reset environment.</p>
        <p id="loadingIndicator" style="color: #ffff00; display: none;">๐Ÿš€ Starting AI inference... This may take 5-15 seconds on first run.</p>
        
        <!-- Model Download Progress -->
        <div id="downloadSection" style="display: none; margin: 20px;">
            <p id="downloadStatus" style="color: #ffaa00; margin: 10px 0;">๐Ÿ“ฅ Downloading AI model...</p>
            <div style="background: #333; border-radius: 10px; padding: 3px; width: 100%; max-width: 600px; margin: 0 auto;">
                <div id="progressBar" style="background: linear-gradient(90deg, #00ff00, #88ff00); height: 20px; border-radius: 7px; width: 0%; transition: width 0.3s;"></div>
            </div>
            <p id="progressText" style="color: #aaa; font-size: 14px; margin: 5px 0;">0% - Initializing...</p>
        </div>
        
        <canvas id="gameCanvas" width="600" height="150" tabindex="0"></canvas>
        
        <div id="status">
            <div class="info">Status: <span id="connectionStatus">Connecting...</span></div>
            <div class="info">Game: <span id="gameStatus">Click to Start</span></div>
            <div class="info">Frame: <span id="frameCount">0</span> | AI FPS: <span id="aiFps">0</span></div>
            <div class="info">Reward: <span id="reward">0</span></div>
        </div>
        
        <div id="controls">
            <div class="control-section">
                <h3>Movement</h3>
                <div>
                    <span class="key-display" id="key-w">W</span> Forward<br>
                    <span class="key-display" id="key-a">A</span> Left
                    <span class="key-display" id="key-s">S</span> Back
                    <span class="key-display" id="key-d">D</span> Right<br>
                    <span class="key-display" id="key-space">Space</span> Jump
                    <span class="key-display" id="key-ctrl">Ctrl</span> Crouch
                    <span class="key-display" id="key-shift">Shift</span> Walk
                </div>
            </div>
            
            <div class="control-section">
                <h3>Actions</h3>
                <div>
                    <span class="key-display" id="key-1">1</span> Weapon 1<br>
                    <span class="key-display" id="key-2">2</span> Weapon 2
                    <span class="key-display" id="key-3">3</span> Weapon 3<br>
                    <span class="key-display" id="key-r">R</span> Reload<br>
                    <span class="key-display" id="key-arrows">โ†‘โ†“โ†โ†’</span> Camera<br>
                    <span class="key-display" id="key-enter">Enter</span> Reset Game<br>
                    <span class="key-display" id="key-esc">Esc</span> Pause/Quit
                </div>
            </div>
        </div>
        
        <script>
            const canvas = document.getElementById('gameCanvas');
            const ctx = canvas.getContext('2d');
            const statusEl = document.getElementById('connectionStatus');
            const gameStatusEl = document.getElementById('gameStatus');
            const frameEl = document.getElementById('frameCount');
            const aiFpsEl = document.getElementById('aiFps');
            const rewardEl = document.getElementById('reward');
            const loadingEl = document.getElementById('loadingIndicator');
            const downloadSectionEl = document.getElementById('downloadSection');
            const downloadStatusEl = document.getElementById('downloadStatus');
            const progressBarEl = document.getElementById('progressBar');
            const progressTextEl = document.getElementById('progressText');
            
            let ws = null;
            let pressedKeys = new Set();
            let gameStarted = false;
            
            // Key mapping
            const keyDisplayMap = {
                'KeyW': 'key-w',
                'KeyA': 'key-a', 
                'KeyS': 'key-s',
                'KeyD': 'key-d',
                'Space': 'key-space',
                'ControlLeft': 'key-ctrl',
                'ShiftLeft': 'key-shift',
                'Digit1': 'key-1',
                'Digit2': 'key-2',
                'Digit3': 'key-3',
                'KeyR': 'key-r',
                'ArrowUp': 'key-arrows',
                'ArrowDown': 'key-arrows',
                'ArrowLeft': 'key-arrows',
                'ArrowRight': 'key-arrows',
                'Enter': 'key-enter',
                'Escape': 'key-esc'
            };
            
            function connectWebSocket() {
                const protocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
                const wsUrl = `${protocol}//${window.location.host}/ws`;
                
                ws = new WebSocket(wsUrl);
                
                ws.onopen = function(event) {
                    statusEl.textContent = 'Connected';
                    statusEl.style.color = '#00ff00';
                };
                
                ws.onmessage = function(event) {
                    const data = JSON.parse(event.data);
                    
                    if (data.type === 'loading') {
                        // Handle loading status
                        downloadSectionEl.style.display = 'block';
                        downloadStatusEl.textContent = data.status;
                        
                        if (data.progress !== undefined) {
                            progressBarEl.style.width = data.progress + '%';
                            progressTextEl.textContent = data.progress + '% - ' + data.status;
                        } else {
                            progressTextEl.textContent = data.status;
                        }
                        
                        gameStatusEl.textContent = 'Loading Models...';
                        gameStatusEl.style.color = '#ffaa00';
                        
                    } else if (data.type === 'frame') {
                        // Hide loading indicators once we get frames
                        downloadSectionEl.style.display = 'none';
                        // Update frame display
                        if (data.image) {
                            const img = new Image();
                            img.onload = function() {
                                ctx.clearRect(0, 0, canvas.width, canvas.height);
                                ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
                            };
                            img.src = data.image;
                        }
                        
                        frameEl.textContent = data.frame_count;
                        rewardEl.textContent = data.reward.toFixed(2);
                        
                        // Update AI FPS display and hide loading indicator once AI starts
                        if (data.ai_fps !== undefined && data.ai_fps !== null) {
                            // Ensure FPS value is reasonable
                            const aiFps = Math.min(Math.max(data.ai_fps, 0), 100);
                            aiFpsEl.textContent = aiFps.toFixed(1);
                            
                            // Color code AI FPS for performance indication
                            if (aiFps >= 8) {
                                aiFpsEl.style.color = '#00ff00';  // Green for good performance
                            } else if (aiFps >= 5) {
                                aiFpsEl.style.color = '#ffff00';  // Yellow for moderate performance
                            } else if (aiFps > 0) {
                                aiFpsEl.style.color = '#ff0000';  // Red for poor performance
                            } else {
                                aiFpsEl.style.color = '#888888';  // Gray for inactive
                            }
                            
                            // Hide loading indicator once AI inference starts working
                            if (aiFps > 0 && gameStarted) {
                                loadingEl.style.display = 'none';
                                gameStatusEl.textContent = 'Playing';
                                gameStatusEl.style.color = '#00ff00';
                            }
                        }
                    }
                };
                
                ws.onclose = function(event) {
                    statusEl.textContent = 'Disconnected';
                    statusEl.style.color = '#ff0000';
                    setTimeout(connectWebSocket, 1000); // Reconnect after 1 second
                };
                
                ws.onerror = function(event) {
                    statusEl.textContent = 'Error';
                    statusEl.style.color = '#ff0000';
                };
            }
            
            function sendKeyState() {
                if (ws && ws.readyState === WebSocket.OPEN) {
                    ws.send(JSON.stringify({
                        type: 'keys',
                        keys: Array.from(pressedKeys)
                    }));
                }
            }
            
            function startGame() {
                if (ws && ws.readyState === WebSocket.OPEN) {
                    ws.send(JSON.stringify({
                        type: 'start'
                    }));
                    gameStarted = true;
                    gameStatusEl.textContent = 'Starting AI...';
                    gameStatusEl.style.color = '#ffff00';
                    loadingEl.style.display = 'block';
                    console.log('Game started');
                }
            }
            
            function pauseGame() {
                if (ws && ws.readyState === WebSocket.OPEN) {
                    ws.send(JSON.stringify({
                        type: 'pause'
                    }));
                    gameStarted = false;
                    gameStatusEl.textContent = 'Paused - Click to Resume';
                    gameStatusEl.style.color = '#ffff00';
                    console.log('Game paused');
                }
            }
            
            function updateKeyDisplay() {
                // Reset all key displays
                Object.values(keyDisplayMap).forEach(id => {
                    const el = document.getElementById(id);
                    if (el) el.classList.remove('key-pressed');
                });
                
                // Highlight pressed keys
                pressedKeys.forEach(key => {
                    const displayId = keyDisplayMap[key];
                    if (displayId) {
                        const el = document.getElementById(displayId);
                        if (el) el.classList.add('key-pressed');
                    }
                });
            }
            
            // Focus canvas and handle keyboard events
            canvas.addEventListener('click', () => {
                canvas.focus();
                if (!gameStarted) {
                    startGame();
                }
            });
            
            canvas.addEventListener('keydown', (event) => {
                event.preventDefault();
                
                // Handle special keys
                if (event.code === 'Enter') {
                    if (ws && ws.readyState === WebSocket.OPEN) {
                        ws.send(JSON.stringify({
                            type: 'reset'
                        }));
                        console.log('Environment reset requested');
                    }
                    // Add to pressedKeys for visual feedback
                    pressedKeys.add(event.code);
                    updateKeyDisplay();
                    
                    // Remove Enter from pressedKeys after a short delay for visual feedback
                    setTimeout(() => {
                        pressedKeys.delete(event.code);
                        updateKeyDisplay();
                    }, 200);
                } else if (event.code === 'Escape') {
                    pauseGame();
                    // Add to pressedKeys for visual feedback
                    pressedKeys.add(event.code);
                    updateKeyDisplay();
                    
                    // Remove ESC from pressedKeys after a short delay for visual feedback
                    setTimeout(() => {
                        pressedKeys.delete(event.code);
                        updateKeyDisplay();
                    }, 200);
                } else {
                    // Only send game keys if game is started
                    if (gameStarted) {
                        pressedKeys.add(event.code);
                        updateKeyDisplay();
                        sendKeyState();
                    }
                }
            });
            
            canvas.addEventListener('keyup', (event) => {
                event.preventDefault();
                
                // Don't handle special keys release (handled in keydown with timeout)
                if (event.code !== 'Enter' && event.code !== 'Escape') {
                    if (gameStarted) {
                        pressedKeys.delete(event.code);
                        updateKeyDisplay();
                        sendKeyState();
                    }
                }
            });
            
            // Handle mouse events for clicks
            canvas.addEventListener('mousedown', (event) => {
                if (ws && ws.readyState === WebSocket.OPEN) {
                    ws.send(JSON.stringify({
                        type: 'mouse',
                        button: event.button,
                        action: 'down',
                        x: event.offsetX,
                        y: event.offsetY
                    }));
                }
            });
            
            canvas.addEventListener('mouseup', (event) => {
                if (ws && ws.readyState === WebSocket.OPEN) {
                    ws.send(JSON.stringify({
                        type: 'mouse',
                        button: event.button,
                        action: 'up',
                        x: event.offsetX,
                        y: event.offsetY
                    }));
                }
            });
            
            // Initialize
            connectWebSocket();
            canvas.focus();
        </script>
    </body>
    </html>
    """
    return html_content

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    """Handle WebSocket connections for real-time game communication"""
    await websocket.accept()
    connected_clients.add(websocket)
    
    try:
        while True:
            # Receive messages from client
            data = await websocket.receive_text()
            message = json.loads(data)
            
            if message['type'] == 'keys':
                # Update pressed keys
                game_engine.pressed_keys = set(message['keys'])
                
            elif message['type'] == 'reset':
                # Handle environment reset request
                game_engine.request_reset()
                
            elif message['type'] == 'start':
                # Handle game start request
                game_engine.start_game()
                
            elif message['type'] == 'pause':
                # Handle game pause request
                game_engine.pause_game()
                
            elif message['type'] == 'mouse':
                # Handle mouse events
                if message['action'] == 'down':
                    if message['button'] == 0:  # Left click
                        game_engine.l_click = True
                    elif message['button'] == 2:  # Right click
                        game_engine.r_click = True
                elif message['action'] == 'up':
                    if message['button'] == 0:  # Left click
                        game_engine.l_click = False
                    elif message['button'] == 2:  # Right click
                        game_engine.r_click = False
                        
                # Update mouse position (relative to canvas)
                game_engine.mouse_x = message.get('x', 0) - 300  # Center at 300px
                game_engine.mouse_y = message.get('y', 0) - 150  # Center at 150px
                
    except WebSocketDisconnect:
        connected_clients.discard(websocket)
    except Exception as e:
        logger.error(f"WebSocket error: {e}")
        connected_clients.discard(websocket)

if __name__ == "__main__":
    # For local development
    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)