Spaces:
Sleeping
Sleeping
File size: 4,335 Bytes
02c6351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# ๐ HF Spaces GPU Acceleration Fix
## โ **Problem Identified:**
Your T4 GPU wasn't being used because:
1. **Dockerfile disabled CUDA**: `ENV CUDA_VISIBLE_DEVICES=""`
2. **Environment variable issues**: OMP_NUM_THREADS causing warnings
3. **App running on CPU**: Despite having T4 GPU hardware
## โ
**Complete Fix Applied:**
### **1. Dockerfile Changes**
```dockerfile
# REMOVED this line that was disabling GPU:
# ENV CUDA_VISIBLE_DEVICES=""
# Fixed environment variables:
ENV OMP_NUM_THREADS=2
ENV MKL_NUM_THREADS=2
```
### **2. App.py Improvements**
- โ
**Fixed OMP_NUM_THREADS early**: Set before any imports
- โ
**Improved GPU detection**: Better logging and detection
- โ
**Cache directories**: Moved setup to very beginning
### **3. Environment Variable Priority**
Environment variables are now set in this order:
1. **Dockerfile** - Base container settings
2. **app.py top** - Python-level fixes (before imports)
3. **HF Spaces** - Runtime overrides
## ๐ฏ **Expected Results After Fix:**
### **Before (CPU mode):**
```
INFO:app:Using device: cpu
INFO:app:CUDA not available, using CPU - this is normal for HF Spaces free tier
CPU 56%
GPU 0%
GPU VRAM 0/16 GB
```
### **After (GPU mode):**
```
INFO:app:Using device: cuda
INFO:app:CUDA available: True
INFO:app:GPU device count: 1
INFO:app:Current GPU: Tesla T4
INFO:app:GPU memory: 15.1 GB
INFO:app:๐ GPU acceleration enabled!
```
### **Performance Improvement:**
- **CPU usage**: Should drop to ~20-30%
- **GPU usage**: Should show 10-50% during AI inference
- **GPU VRAM**: Should show 2-4GB usage
- **AI FPS**: Should increase from ~2 FPS to 10+ FPS
## ๐ **Deployment Steps:**
1. **Commit and push changes:**
```bash
git add .
git commit -m "Enable GPU acceleration for HF Spaces T4"
git push
```
2. **Wait for rebuild** (HF Spaces will restart automatically)
3. **Check new logs** for GPU detection:
```
INFO:app:๐ GPU acceleration enabled!
```
4. **Monitor system stats:**
- GPU usage should now show activity
- GPU VRAM should show memory allocation
- Overall performance should be much faster
## ๐ **Debugging Commands:**
### **Check CUDA in container:**
```python
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"GPU count: {torch.cuda.device_count()}")
if torch.cuda.is_available():
print(f"GPU name: {torch.cuda.get_device_name(0)}")
```
### **Check environment variables:**
```python
import os
print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
print(f"OMP_NUM_THREADS: {os.environ.get('OMP_NUM_THREADS')}")
```
## ๐จ **If GPU Still Not Working:**
### **1. Verify HF Spaces Hardware:**
- Check your Space settings
- Ensure "T4 small" or "T4 medium" is selected
- Free tier doesn't have GPU access
### **2. Check Container Logs:**
Look for these messages:
- โ
`"๐ GPU acceleration enabled!"`
- โ `"CUDA not available"`
### **3. Alternative: Force GPU Detection**
If needed, add this debug code to app.py:
```python
# Debug GPU detection
logger.info(f"Environment CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
logger.info(f"PyTorch CUDA compiled: {torch.version.cuda}")
logger.info(f"PyTorch version: {torch.__version__}")
```
## โก **Performance Optimization Tips:**
### **For T4 GPU:**
1. **Enable model compilation** (optional):
```bash
# Set environment variable in HF Spaces settings:
ENABLE_TORCH_COMPILE=1
```
2. **Increase AI FPS** (if needed):
```python
# In app.py, line ~86:
self.ai_fps = 15 # Increase from 10 to 15
```
3. **Monitor GPU memory**:
- T4 has 16GB VRAM
- App should use 2-4GB
- Leave headroom for other processes
## ๐ฎ **Expected User Experience:**
1. **Faster loading**: Models load to GPU memory
2. **Responsive gameplay**: AI inference runs at 10+ FPS
3. **Smoother visuals**: Display updates without lag
4. **Better AI performance**: GPU acceleration improves model inference
Your HF Spaces deployment should now fully utilize the T4 GPU! ๐
## ๐ **Monitor These Metrics:**
- **GPU Utilization**: 10-50% during gameplay
- **GPU Memory**: 2-4GB allocated
- **AI FPS**: 10-15 FPS (displayed in web interface)
- **CPU Usage**: Should decrease to 20-30%
The game should feel much more responsive now! ๐
|