Spaces:
Sleeping
Sleeping
Commit
·
ded2bd6
1
Parent(s):
7deb5ff
Fix bug 7
Browse files- app.py +42 -50
- config/agent/csgo.yaml +7 -1
- src/__init__.pyc +0 -0
- src/__pycache__/agent.cpython-310.pyc +0 -0
- src/game/__init__.pyc +0 -0
- src/game/__pycache__/dataset_env.cpython-310.pyc +0 -0
- src/game/__pycache__/game.cpython-310.pyc +0 -0
- src/game/__pycache__/play_env.cpython-310.pyc +0 -0
- src/game/__pycache__/web_play_env.cpython-310.pyc +0 -0
- src/game/play_env.py +5 -5
- src/game/web_play_env.py +87 -133
app.py
CHANGED
|
@@ -25,6 +25,14 @@ from omegaconf import DictConfig, OmegaConf
|
|
| 25 |
from PIL import Image
|
| 26 |
|
| 27 |
# Import your modules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from src.agent import Agent
|
| 29 |
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
|
| 30 |
from src.envs import WorldModelEnv
|
|
@@ -96,62 +104,24 @@ class WebGameEngine:
|
|
| 96 |
def load_model_weights():
|
| 97 |
"""Load model weights in thread pool to avoid blocking"""
|
| 98 |
try:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
self.loading_status = "Downloading model without caching..."
|
| 102 |
self.download_progress = 10
|
| 103 |
|
| 104 |
model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
|
| 105 |
|
| 106 |
-
# Use
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
logger.info(f"Starting direct download from {model_url}")
|
| 111 |
-
response = requests.get(model_url, stream=True)
|
| 112 |
-
response.raise_for_status()
|
| 113 |
-
|
| 114 |
-
# Get the total file size for progress tracking
|
| 115 |
-
total_size = int(response.headers.get('content-length', 0))
|
| 116 |
-
logger.info(f"Model file size: {total_size / (1024*1024):.1f} MB")
|
| 117 |
-
|
| 118 |
-
# Download with progress tracking
|
| 119 |
-
downloaded_data = io.BytesIO()
|
| 120 |
-
downloaded_size = 0
|
| 121 |
-
|
| 122 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 123 |
-
if chunk:
|
| 124 |
-
downloaded_data.write(chunk)
|
| 125 |
-
downloaded_size += len(chunk)
|
| 126 |
-
|
| 127 |
-
# Update progress
|
| 128 |
-
if total_size > 0:
|
| 129 |
-
progress = min(50, int((downloaded_size / total_size) * 40) + 10) # 10-50%
|
| 130 |
-
if progress != self.download_progress:
|
| 131 |
-
self.download_progress = progress
|
| 132 |
-
logger.info(f"Download progress: {progress}%")
|
| 133 |
-
|
| 134 |
-
self.download_progress = 50
|
| 135 |
-
self.loading_status = "Download complete, loading model..."
|
| 136 |
-
logger.info("Download completed, loading state dict...")
|
| 137 |
-
|
| 138 |
-
# Reset to beginning of buffer and load
|
| 139 |
-
downloaded_data.seek(0)
|
| 140 |
-
state_dict = torch.load(downloaded_data, map_location=device)
|
| 141 |
-
logger.info("Successfully loaded model using direct download")
|
| 142 |
|
| 143 |
-
except Exception as e:
|
| 144 |
-
logger.error(f"Failed to download model directly: {e}")
|
| 145 |
-
raise Exception(f"Direct download failed: {str(e)}")
|
| 146 |
-
|
| 147 |
-
# Load state dict into agent using the new load_state_dict method
|
| 148 |
-
try:
|
| 149 |
-
logger.info("Model download completed, loading weights...")
|
| 150 |
self.download_progress = 60
|
| 151 |
self.loading_status = "Loading model weights into agent..."
|
|
|
|
| 152 |
|
| 153 |
-
#
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
|
| 156 |
self.download_progress = 100
|
| 157 |
self.loading_status = "Model loaded successfully!"
|
|
@@ -159,7 +129,7 @@ class WebGameEngine:
|
|
| 159 |
return True
|
| 160 |
|
| 161 |
except Exception as e:
|
| 162 |
-
logger.error(f"Failed to load
|
| 163 |
import traceback
|
| 164 |
traceback.print_exc()
|
| 165 |
return False
|
|
@@ -210,6 +180,15 @@ class WebGameEngine:
|
|
| 210 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 211 |
logger.info(f"Using device: {device}")
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
# Initialize agent first
|
| 214 |
num_actions = cfg.env.num_actions
|
| 215 |
agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
|
|
@@ -228,7 +207,7 @@ class WebGameEngine:
|
|
| 228 |
logger.info("Successfully loaded checkpoint from HF Hub")
|
| 229 |
else:
|
| 230 |
# Fallback to local checkpoint if available
|
| 231 |
-
logger.
|
| 232 |
checkpoint_path = web_config.get_checkpoint_path()
|
| 233 |
if checkpoint_path.exists():
|
| 234 |
logger.info(f"Loading local checkpoint: {checkpoint_path}")
|
|
@@ -236,6 +215,7 @@ class WebGameEngine:
|
|
| 236 |
agent.load(checkpoint_path)
|
| 237 |
logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
|
| 238 |
else:
|
|
|
|
| 239 |
raise FileNotFoundError("No model checkpoint available (local or remote)")
|
| 240 |
|
| 241 |
except Exception as e:
|
|
@@ -255,6 +235,18 @@ class WebGameEngine:
|
|
| 255 |
# Create play environment
|
| 256 |
self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
# Model compilation causes 10-30s delay on first inference, so make it optional
|
| 259 |
# You can enable it by setting ENABLE_TORCH_COMPILE=1 environment variable
|
| 260 |
import os
|
|
|
|
| 25 |
from PIL import Image
|
| 26 |
|
| 27 |
# Import your modules
|
| 28 |
+
import sys
|
| 29 |
+
from pathlib import Path
|
| 30 |
+
|
| 31 |
+
# Add project root to path for src package imports
|
| 32 |
+
project_root = Path(__file__).parent
|
| 33 |
+
if str(project_root) not in sys.path:
|
| 34 |
+
sys.path.insert(0, str(project_root))
|
| 35 |
+
|
| 36 |
from src.agent import Agent
|
| 37 |
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
|
| 38 |
from src.envs import WorldModelEnv
|
|
|
|
| 104 |
def load_model_weights():
|
| 105 |
"""Load model weights in thread pool to avoid blocking"""
|
| 106 |
try:
|
| 107 |
+
logger.info("Loading model using torch.hub.load_state_dict_from_url...")
|
| 108 |
+
self.loading_status = "Downloading model..."
|
|
|
|
| 109 |
self.download_progress = 10
|
| 110 |
|
| 111 |
model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
|
| 112 |
|
| 113 |
+
# Use torch.hub to download and load state dict
|
| 114 |
+
logger.info(f"Loading state dict from {model_url}")
|
| 115 |
+
state_dict = torch.hub.load_state_dict_from_url(model_url, map_location=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
self.download_progress = 60
|
| 118 |
self.loading_status = "Loading model weights into agent..."
|
| 119 |
+
logger.info("State dict loaded, applying to agent...")
|
| 120 |
|
| 121 |
+
# Load state dict into agent, but skip actor_critic if not present
|
| 122 |
+
has_actor_critic = any(k.startswith('actor_critic.') for k in state_dict.keys())
|
| 123 |
+
logger.info(f"Model has actor_critic weights: {has_actor_critic}")
|
| 124 |
+
agent.load_state_dict(state_dict, load_actor_critic=has_actor_critic)
|
| 125 |
|
| 126 |
self.download_progress = 100
|
| 127 |
self.loading_status = "Model loaded successfully!"
|
|
|
|
| 129 |
return True
|
| 130 |
|
| 131 |
except Exception as e:
|
| 132 |
+
logger.error(f"Failed to load model: {e}")
|
| 133 |
import traceback
|
| 134 |
traceback.print_exc()
|
| 135 |
return False
|
|
|
|
| 180 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 181 |
logger.info(f"Using device: {device}")
|
| 182 |
|
| 183 |
+
# Log GPU availability and CUDA info for debugging HF Spaces
|
| 184 |
+
if torch.cuda.is_available():
|
| 185 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 186 |
+
logger.info(f"GPU device count: {torch.cuda.device_count()}")
|
| 187 |
+
logger.info(f"Current GPU: {torch.cuda.get_device_name(0)}")
|
| 188 |
+
logger.info(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
| 189 |
+
else:
|
| 190 |
+
logger.info("CUDA not available, using CPU - this is normal for HF Spaces free tier")
|
| 191 |
+
|
| 192 |
# Initialize agent first
|
| 193 |
num_actions = cfg.env.num_actions
|
| 194 |
agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
|
|
|
|
| 207 |
logger.info("Successfully loaded checkpoint from HF Hub")
|
| 208 |
else:
|
| 209 |
# Fallback to local checkpoint if available
|
| 210 |
+
logger.error("Failed to load from HF Hub! Check the detailed error above.")
|
| 211 |
checkpoint_path = web_config.get_checkpoint_path()
|
| 212 |
if checkpoint_path.exists():
|
| 213 |
logger.info(f"Loading local checkpoint: {checkpoint_path}")
|
|
|
|
| 215 |
agent.load(checkpoint_path)
|
| 216 |
logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
|
| 217 |
else:
|
| 218 |
+
logger.error(f"No local checkpoint found at: {checkpoint_path}")
|
| 219 |
raise FileNotFoundError("No model checkpoint available (local or remote)")
|
| 220 |
|
| 221 |
except Exception as e:
|
|
|
|
| 235 |
# Create play environment
|
| 236 |
self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
|
| 237 |
|
| 238 |
+
# Verify actor-critic is loaded and ready for inference
|
| 239 |
+
if agent.actor_critic is not None:
|
| 240 |
+
logger.info(f"Actor-critic model loaded with {agent.actor_critic.lstm_dim} LSTM dimensions")
|
| 241 |
+
logger.info(f"Actor-critic device: {agent.actor_critic.device}")
|
| 242 |
+
# Force AI control for web demo
|
| 243 |
+
self.play_env.is_human_player = False
|
| 244 |
+
logger.info("WebPlayEnv set to AI control mode")
|
| 245 |
+
else:
|
| 246 |
+
logger.warning("No actor-critic model found - AI inference will not work!")
|
| 247 |
+
self.play_env.is_human_player = True
|
| 248 |
+
logger.info("WebPlayEnv set to human control mode (fallback)")
|
| 249 |
+
|
| 250 |
# Model compilation causes 10-30s delay on first inference, so make it optional
|
| 251 |
# You can enable it by setting ENABLE_TORCH_COMPILE=1 environment variable
|
| 252 |
import os
|
config/agent/csgo.yaml
CHANGED
|
@@ -31,4 +31,10 @@ upsampler:
|
|
| 31 |
attn_depths: [0, 0, 0, 1]
|
| 32 |
|
| 33 |
rew_end_model: null
|
| 34 |
-
actor_critic:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
attn_depths: [0, 0, 0, 1]
|
| 32 |
|
| 33 |
rew_end_model: null
|
| 34 |
+
actor_critic:
|
| 35 |
+
_target_: src.models.actor_critic.ActorCriticConfig
|
| 36 |
+
lstm_dim: 512
|
| 37 |
+
img_channels: 3
|
| 38 |
+
img_size: 64
|
| 39 |
+
channels: [32, 64, 128]
|
| 40 |
+
down: [2, 2, 2]
|
src/__init__.pyc
ADDED
|
Binary file (102 Bytes). View file
|
|
|
src/__pycache__/agent.cpython-310.pyc
CHANGED
|
Binary files a/src/__pycache__/agent.cpython-310.pyc and b/src/__pycache__/agent.cpython-310.pyc differ
|
|
|
src/game/__init__.pyc
ADDED
|
Binary file (366 Bytes). View file
|
|
|
src/game/__pycache__/dataset_env.cpython-310.pyc
CHANGED
|
Binary files a/src/game/__pycache__/dataset_env.cpython-310.pyc and b/src/game/__pycache__/dataset_env.cpython-310.pyc differ
|
|
|
src/game/__pycache__/game.cpython-310.pyc
CHANGED
|
Binary files a/src/game/__pycache__/game.cpython-310.pyc and b/src/game/__pycache__/game.cpython-310.pyc differ
|
|
|
src/game/__pycache__/play_env.cpython-310.pyc
CHANGED
|
Binary files a/src/game/__pycache__/play_env.cpython-310.pyc and b/src/game/__pycache__/play_env.cpython-310.pyc differ
|
|
|
src/game/__pycache__/web_play_env.cpython-310.pyc
CHANGED
|
Binary files a/src/game/__pycache__/web_play_env.cpython-310.pyc and b/src/game/__pycache__/web_play_env.cpython-310.pyc differ
|
|
|
src/game/play_env.py
CHANGED
|
@@ -7,11 +7,11 @@ import pygame
|
|
| 7 |
import torch
|
| 8 |
from torch import Tensor
|
| 9 |
|
| 10 |
-
from agent import Agent
|
| 11 |
-
from csgo.action_processing import CSGOAction, decode_csgo_action, encode_csgo_action, print_csgo_action
|
| 12 |
-
from csgo.keymap import CSGO_KEYMAP
|
| 13 |
-
from data import Dataset, Episode
|
| 14 |
-
from envs import WorldModelEnv
|
| 15 |
|
| 16 |
|
| 17 |
NamedEnv = namedtuple("NamedEnv", "name env")
|
|
|
|
| 7 |
import torch
|
| 8 |
from torch import Tensor
|
| 9 |
|
| 10 |
+
from ..agent import Agent
|
| 11 |
+
from ..csgo.action_processing import CSGOAction, decode_csgo_action, encode_csgo_action, print_csgo_action
|
| 12 |
+
from ..csgo.keymap import CSGO_KEYMAP
|
| 13 |
+
from ..data import Dataset, Episode
|
| 14 |
+
from ..envs import WorldModelEnv
|
| 15 |
|
| 16 |
|
| 17 |
NamedEnv = namedtuple("NamedEnv", "name env")
|
src/game/web_play_env.py
CHANGED
|
@@ -1,82 +1,68 @@
|
|
| 1 |
"""
|
| 2 |
-
Web-compatible PlayEnv that
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
from
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
from typing import Any, Dict, List, Tuple, Set
|
| 8 |
-
|
| 9 |
import torch
|
| 10 |
from torch import Tensor
|
|
|
|
| 11 |
|
| 12 |
from ..agent import Agent
|
| 13 |
-
from ..csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names, encode_web_csgo_action
|
| 14 |
-
from ..data import Dataset, Episode
|
| 15 |
from ..envs import WorldModelEnv
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
OneStepData = namedtuple("OneStepData", "obs act rew end trunc")
|
| 18 |
|
| 19 |
-
class WebPlayEnv:
|
| 20 |
-
"""Web-compatible version of PlayEnv
|
| 21 |
|
| 22 |
def __init__(
|
| 23 |
self,
|
| 24 |
agent: Agent,
|
| 25 |
wm_env: WorldModelEnv,
|
| 26 |
-
recording_mode: bool
|
| 27 |
-
store_denoising_trajectory: bool
|
| 28 |
-
store_original_obs: bool
|
| 29 |
) -> None:
|
| 30 |
-
|
| 31 |
-
self.recording_mode = recording_mode
|
| 32 |
-
self.store_denoising_trajectory = store_denoising_trajectory
|
| 33 |
-
self.store_original_obs = store_original_obs
|
| 34 |
-
self.is_human_player = True
|
| 35 |
-
self.env_id = 0
|
| 36 |
-
self.env_name = "world model"
|
| 37 |
-
self.env = wm_env
|
| 38 |
-
self.obs, self.t, self.buffer, self.rec_dataset = (None,) * 4
|
| 39 |
-
|
| 40 |
-
def print_controls(self) -> None:
|
| 41 |
-
"""Print available controls for web interface"""
|
| 42 |
-
print("\nWeb Environment Controls:\n")
|
| 43 |
-
controls = {
|
| 44 |
-
"W": "Move Forward",
|
| 45 |
-
"A": "Move Left",
|
| 46 |
-
"S": "Move Back",
|
| 47 |
-
"D": "Move Right",
|
| 48 |
-
"Space": "Jump",
|
| 49 |
-
"Ctrl": "Crouch",
|
| 50 |
-
"Shift": "Walk",
|
| 51 |
-
"1": "Weapon 1",
|
| 52 |
-
"2": "Weapon 2",
|
| 53 |
-
"3": "Weapon 3",
|
| 54 |
-
"R": "Reload",
|
| 55 |
-
"Arrow Keys": "Camera Movement",
|
| 56 |
-
"Left Click": "Primary Fire",
|
| 57 |
-
"Right Click": "Secondary Fire"
|
| 58 |
-
}
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def step_from_web_input(self, pressed_keys: Set[str], mouse_x: float = 0, mouse_y: float = 0,
|
| 64 |
-
l_click: bool = False, r_click: bool = False) -> Tuple[Tensor, Tensor, bool, bool, Dict]:
|
| 65 |
-
"""
|
| 66 |
-
Step the environment using web input
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
"""
|
|
|
|
| 76 |
# Convert web keys to action names
|
| 77 |
action_names = web_keys_to_csgo_action_names(pressed_keys)
|
| 78 |
|
| 79 |
-
# Create
|
| 80 |
web_action = WebCSGOAction(
|
| 81 |
key_names=action_names,
|
| 82 |
mouse_x=mouse_x,
|
|
@@ -85,84 +71,52 @@ class WebPlayEnv:
|
|
| 85 |
r_click=r_click
|
| 86 |
)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def step_with_tensor(self, action_tensor: Tensor) -> Tuple[Tensor, Tensor, bool, bool, Dict]:
|
| 95 |
-
"""Step environment with pre-encoded action tensor"""
|
| 96 |
-
if self.is_human_player:
|
| 97 |
-
# Use human action
|
| 98 |
-
act = action_tensor.unsqueeze(0) # Add batch dimension
|
| 99 |
else:
|
| 100 |
-
#
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
# Step environment
|
| 106 |
-
next_obs, rew, end, trunc,
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
self.rec_dataset.save_episode()
|
| 112 |
-
print(f"Episode saved! Length: {len(self.buffer)}")
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
self.obs = self.env.reset()[0] # Get first observation from batch
|
| 119 |
-
self.t = 0
|
| 120 |
-
self.buffer = []
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
self.hx_cx = (
|
| 125 |
-
torch.zeros(1, self.agent.actor_critic.lstm_dim, device=self.agent.device),
|
| 126 |
-
torch.zeros(1, self.agent.actor_critic.lstm_dim, device=self.agent.device)
|
| 127 |
-
)
|
| 128 |
-
else:
|
| 129 |
-
self.hx_cx = None
|
| 130 |
-
|
| 131 |
-
info = {"step": 0, "episode_return": 0}
|
| 132 |
-
return self.obs, info
|
| 133 |
-
|
| 134 |
-
def switch_controller(self) -> bool:
|
| 135 |
-
"""Switch between human and AI control"""
|
| 136 |
-
self.is_human_player = not self.is_human_player
|
| 137 |
-
controller = "Human" if self.is_human_player else "AI"
|
| 138 |
-
print(f"Switched to {controller} control")
|
| 139 |
-
return True
|
| 140 |
-
|
| 141 |
-
def next_mode(self) -> bool:
|
| 142 |
-
"""Switch control mode"""
|
| 143 |
-
return self.switch_controller()
|
| 144 |
-
|
| 145 |
-
def next_axis_1(self) -> bool:
|
| 146 |
-
"""Placeholder for axis control"""
|
| 147 |
-
return False
|
| 148 |
-
|
| 149 |
-
def prev_axis_1(self) -> bool:
|
| 150 |
-
"""Placeholder for axis control"""
|
| 151 |
-
return False
|
| 152 |
-
|
| 153 |
-
def next_axis_2(self) -> bool:
|
| 154 |
-
"""Placeholder for axis control"""
|
| 155 |
-
return False
|
| 156 |
-
|
| 157 |
-
def prev_axis_2(self) -> bool:
|
| 158 |
-
"""Placeholder for axis control"""
|
| 159 |
-
return False
|
| 160 |
-
|
| 161 |
-
def print_env(self) -> None:
|
| 162 |
-
"""Print current environment info"""
|
| 163 |
-
print(f"> Environment: {self.env_name}")
|
| 164 |
-
print(f"> Controller: {'Human' if self.is_human_player else 'AI'}")
|
| 165 |
-
|
| 166 |
-
def str_control(self) -> str:
|
| 167 |
-
"""Get control mode string"""
|
| 168 |
-
return "Human" if self.is_human_player else "AI"
|
|
|
|
| 1 |
"""
|
| 2 |
+
Web-compatible PlayEnv that handles web input and AI inference
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
from typing import Any, Dict, List, Set, Tuple
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
from torch import Tensor
|
| 8 |
+
from torch.distributions.categorical import Categorical
|
| 9 |
|
| 10 |
from ..agent import Agent
|
|
|
|
|
|
|
| 11 |
from ..envs import WorldModelEnv
|
| 12 |
+
from ..csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names, encode_web_csgo_action
|
| 13 |
+
from .play_env import PlayEnv
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
+
class WebPlayEnv(PlayEnv):
|
| 17 |
+
"""Web-compatible version of PlayEnv that handles web input and AI inference"""
|
| 18 |
|
| 19 |
def __init__(
|
| 20 |
self,
|
| 21 |
agent: Agent,
|
| 22 |
wm_env: WorldModelEnv,
|
| 23 |
+
recording_mode: bool,
|
| 24 |
+
store_denoising_trajectory: bool,
|
| 25 |
+
store_original_obs: bool,
|
| 26 |
) -> None:
|
| 27 |
+
super().__init__(agent, wm_env, recording_mode, store_denoising_trajectory, store_original_obs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# For web demo, we want AI control by default
|
| 30 |
+
self.is_human_player = False # AI controls the actions
|
| 31 |
+
self.human_input_override = False # Can be set to True to allow human input
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Initialize LSTM hidden states for actor-critic
|
| 34 |
+
self.hx = torch.zeros(1, agent.actor_critic.lstm_dim, device=agent.device)
|
| 35 |
+
self.cx = torch.zeros(1, agent.actor_critic.lstm_dim, device=agent.device)
|
| 36 |
+
|
| 37 |
+
def switch_controller(self) -> None:
|
| 38 |
+
"""Switch between AI and human control"""
|
| 39 |
+
self.is_human_player = not self.is_human_player
|
| 40 |
+
print(f"Switched to {'human' if self.is_human_player else 'AI'} control")
|
| 41 |
+
|
| 42 |
+
def str_control(self) -> str:
|
| 43 |
+
"""Return control mode string"""
|
| 44 |
+
if self.human_input_override:
|
| 45 |
+
return "Human Override"
|
| 46 |
+
return "Human" if self.is_human_player else "AI"
|
| 47 |
+
|
| 48 |
+
@torch.no_grad()
|
| 49 |
+
def step_from_web_input(
|
| 50 |
+
self,
|
| 51 |
+
pressed_keys: Set[str],
|
| 52 |
+
mouse_x: float,
|
| 53 |
+
mouse_y: float,
|
| 54 |
+
l_click: bool,
|
| 55 |
+
r_click: bool,
|
| 56 |
+
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Dict[str, Any]]:
|
| 57 |
+
"""
|
| 58 |
+
Step the environment with web input.
|
| 59 |
+
If AI mode is enabled, use AI inference. If human mode or override, use human input.
|
| 60 |
"""
|
| 61 |
+
|
| 62 |
# Convert web keys to action names
|
| 63 |
action_names = web_keys_to_csgo_action_names(pressed_keys)
|
| 64 |
|
| 65 |
+
# Create web CSGO action from input
|
| 66 |
web_action = WebCSGOAction(
|
| 67 |
key_names=action_names,
|
| 68 |
mouse_x=mouse_x,
|
|
|
|
| 71 |
r_click=r_click
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# If we have human input override or in human mode, use human input
|
| 75 |
+
if self.human_input_override or self.is_human_player:
|
| 76 |
+
# Encode the web action to tensor format
|
| 77 |
+
action = encode_web_csgo_action(web_action, device=self.agent.device)
|
| 78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
else:
|
| 80 |
+
# AI mode - use the agent's actor-critic to predict the action
|
| 81 |
+
try:
|
| 82 |
+
# Get current observation (ensure it has batch dimension)
|
| 83 |
+
obs = self.obs
|
| 84 |
+
if obs.ndim == 3: # CHW -> BCHW
|
| 85 |
+
obs = obs.unsqueeze(0)
|
| 86 |
+
|
| 87 |
+
# Detach hidden states to prevent gradient tracking
|
| 88 |
+
self.hx = self.hx.detach()
|
| 89 |
+
self.cx = self.cx.detach()
|
| 90 |
+
|
| 91 |
+
# Get action logits and value from actor-critic
|
| 92 |
+
logits_act, value, (self.hx, self.cx) = self.agent.actor_critic.predict_act_value(obs, (self.hx, self.cx))
|
| 93 |
+
|
| 94 |
+
# Sample action from logits
|
| 95 |
+
action_dist = Categorical(logits=logits_act)
|
| 96 |
+
action = action_dist.sample()
|
| 97 |
+
|
| 98 |
+
# Convert to proper shape (remove batch dimension if needed)
|
| 99 |
+
if action.ndim > 0 and action.size(0) == 1:
|
| 100 |
+
action = action.squeeze(0)
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"AI inference failed: {e}")
|
| 104 |
+
import traceback
|
| 105 |
+
traceback.print_exc()
|
| 106 |
+
# Fallback to human input if AI fails
|
| 107 |
+
action = encode_web_csgo_action(web_action, device=self.agent.device)
|
| 108 |
|
| 109 |
+
# Step the environment with the chosen action
|
| 110 |
+
next_obs, rew, end, trunc, env_info = self.env.step(action)
|
| 111 |
|
| 112 |
+
# Update internal state
|
| 113 |
+
self.obs = next_obs
|
| 114 |
+
self.t += 1
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Reset hidden states on episode end
|
| 117 |
+
if end.any() or trunc.any():
|
| 118 |
+
self.hx.zero_()
|
| 119 |
+
self.cx.zero_()
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Return the step results
|
| 122 |
+
return next_obs, rew, end, trunc, env_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|