import math from typing import Generator, List import torch import torch.nn.functional as F from .batch import Batch from .episode import Episode from .segment import Segment, SegmentId def collate_segments_to_batch(segments: List[Segment]) -> Batch: attrs = ("obs", "act", "rew", "end", "trunc", "mask_padding") stack = (torch.stack([getattr(s, x) for s in segments]) for x in attrs) return Batch(*stack, [s.info for s in segments], [s.id for s in segments]) def make_segment(episode: Episode, segment_id: SegmentId, should_pad: bool = True) -> Segment: assert segment_id.start < len(episode) and segment_id.stop > 0 and segment_id.start < segment_id.stop pad_len_right = max(0, segment_id.stop - len(episode)) pad_len_left = max(0, -segment_id.start) assert pad_len_right == pad_len_left == 0 or should_pad def pad(x): right = F.pad(x, [0 for _ in range(2 * x.ndim - 1)] + [pad_len_right]) if pad_len_right > 0 else x return F.pad(right, [0 for _ in range(2 * x.ndim - 2)] + [pad_len_left, 0]) if pad_len_left > 0 else right start = max(0, segment_id.start) stop = min(len(episode), segment_id.stop) mask_padding = torch.cat((torch.zeros(pad_len_left), torch.ones(stop - start), torch.zeros(pad_len_right))).bool() return Segment( pad(episode.obs[start:stop]), pad(episode.act[start:stop]), pad(episode.rew[start:stop]), pad(episode.end[start:stop]), pad(episode.trunc[start:stop]), mask_padding, pad(episode.states[start:stop]), pad(episode.ego_state[start:stop]), info=episode.info, id=SegmentId(segment_id.episode_id, start, stop), ) class DatasetTraverser: def __init__(self, dataset, batch_num_samples: int, chunk_size: int) -> None: self.dataset = dataset self.batch_num_samples = batch_num_samples self.chunk_size = chunk_size def __len__(self): return math.ceil( sum( [ math.ceil(self.dataset.lengths[episode_id] / self.chunk_size) - int(self.dataset.lengths[episode_id] % self.chunk_size == 1) for episode_id in range(self.dataset.num_episodes) ] ) / self.batch_num_samples ) def __iter__(self) -> Generator[Batch, None, None]: chunks = [] for episode_id in range(self.dataset.num_episodes): episode = self.dataset.load_episode(episode_id) segments = [] for i in range(math.ceil(len(episode) / self.chunk_size)): start = i * self.chunk_size stop = (i + 1) * self.chunk_size segment = make_segment( episode, SegmentId(episode_id, start, stop), should_pad=True, ) segment_id_full_res = SegmentId(episode.info["original_file_id"], start, stop) segment.info["full_res"] = self.dataset._dataset_full_res[segment_id_full_res].obs chunks.append(segment) if chunks[-1].effective_size < 2: chunks.pop() while len(chunks) >= self.batch_num_samples: yield collate_segments_to_batch(chunks[: self.batch_num_samples]) chunks = chunks[self.batch_num_samples :] if len(chunks) > 0: yield collate_segments_to_batch(chunks)