Spaces:
Sleeping
Sleeping
File size: 8,525 Bytes
a8ab7ac 8e6512c a8ab7ac 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c a8ab7ac 8e6512c a8ab7ac 8e6512c a8ab7ac b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 8e6512c b5cbaa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import os
os.environ.setdefault("ASTROPY_SKIP_CONFIG_UPDATE", "1")
import astropy.config.configuration as _astro_config
import numpy
import scipy.interpolate
import scipy.ndimage
import scipy.optimize
import skimage.filters
import skimage.morphology
from PIL import Image
import predict
if not hasattr(_astro_config, "update_default_config"):
def _noop_update_default_config(*args, **kwargs):
return None
_astro_config.update_default_config = _noop_update_default_config
import astropy.units as u
import cv2
import pooch
from fil_finder import FilFinder2D
from tqdm import tqdm
import utils.dataset
colourTableHex = {
"LAD": "#f03b20",
"D": "#fd8d3c",
"CX": "#31a354",
"OM": "#74c476",
"RCA": "#08519c",
"AM": "#3182bd",
"LM": "#984ea3",
}
colourTableList = {}
for item in colourTableHex.keys():
### WARNING HACK: The colours go in backwards here for some reason perhaps related to RGBA?
colourTableList[item] = [
int(colourTableHex[item][5:7], 16),
int(colourTableHex[item][3:5], 16),
int(colourTableHex[item][1:3], 16),
]
def skeletonise(maskArray):
# if len(maskArray.shape) == 3:
maskArray = cv2.cvtColor(maskArray, cv2.COLOR_BGR2GRAY)
skeleton = skimage.morphology.skeletonize(maskArray.astype("bool"))
# Process the skeleton and find the longest path
fil = FilFinder2D(
skeleton.astype("uint8"),
distance=250 * u.pc,
mask=skeleton,
beamwidth=10.0 * u.pix,
)
fil.preprocess_image(flatten_percent=85)
fil.create_mask(border_masking=True, verbose=False, use_existing_mask=True)
fil.medskel(verbose=False)
fil.analyze_skeletons(
branch_thresh=400 * u.pix, skel_thresh=10 * u.pix, prune_criteria="length"
)
# add image arrays dictionary
# tifffile.imwrite(os.path.join(arteryFolder, "skel.tif"), fil.skeleton.astype('<u1')*255)
skel = fil.skeleton.astype("<u1") * 255
return skel
def skelEndpoints(skel):
# skel[skel!=0] = 1
skel = numpy.uint8(skel > 0)
# Apply the convolution.
kernel = numpy.uint8([[1, 1, 1], [1, 10, 1], [1, 1, 1]])
src_depth = -1
filtered = cv2.filter2D(skel, src_depth, kernel)
# Look through to find the value of 11.
# This returns a mask of the endpoints, but if you
# just want the coordinates, you could simply
# return np.where(filtered==11)
out = numpy.zeros_like(skel)
out[numpy.where(filtered == 11)] = 1
endCoords = numpy.where(filtered == 11)
endCoords = list(zip(*endCoords))
startPoint = endCoords[0]
endPoint = endCoords[1]
# print(f"Skel starts at {startPoint} and finishes at {endPoint}")
return startPoint, endPoint
def skelPointsInOrder(skel, startPoint=None):
"""
put in a skel image, get the y, x points out in order
"""
# Lazy!!
if startPoint is None:
startPoint, _ = skelEndpoints(skel)
# get the coordinates of all points in the skeleton
skelXY = numpy.array(numpy.where(skel))
skelPoints = list(zip(skelXY[0], skelXY[1]))
skelLength = len(skelPoints)
# Loop through the skeleton starting with startPoint, deleting the starting point from the skelPoints list, and finding the closest pixel. This is appended to orderedPoints. startPoint now becomes the last point to be appended.
startPointCopy = startPoint # copied as we are going to loop and overwrite, but want to also keep the original startPoint
orderedPoints = []
while len(skelPoints) > 1:
skelPoints.remove(startPointCopy)
# Calculate the point that is closest to the start point
diffs = numpy.abs(numpy.array(skelPoints) - numpy.array(startPointCopy))
dists = numpy.sum(diffs, axis=1) # l1-distance
closest_point_index = numpy.argmin(dists)
closestPoint = skelPoints[closest_point_index]
orderedPoints.append(closestPoint)
startPointCopy = closestPoint
orderedPoints = numpy.array(orderedPoints)
# YX points
return orderedPoints
def skelSplinerWithThickness(skel, EDT, smoothing=50, order=3, decimation=2):
# NOTE: the coordinate seem to come out with y first, then x
startPoint, endPoint = skelEndpoints(skel)
# Impose an order to points
orderedPoints = skelPointsInOrder(skel, startPoint)
# unzip ordered points to extract x and y arrays
x = orderedPoints[:, 1].ravel()
y = orderedPoints[:, 0].ravel()
x = x[::decimation]
y = y[::decimation]
# NOTE: Should the EDT be median filtered? I wonder in fact if doing so will reduce the accuracy of the model.
# EDT = skimage.filters.median(EDT)
t = EDT[y, x]
x = x[0:-1]
y = y[0:-1]
t = t[0:-1]
print(x.shape, y.shape, t.shape)
tcko, uo = scipy.interpolate.splprep([y, x, t], s=smoothing, k=order, per=False)
return tcko
def arterySegmentation(inputImage, groundTruthPoints, segmentationModelWeights=None):
"""
Segment a single greyscale artery with a UNet model.
Parameters
----------
inputImage: 2D numpy array
Ideally this input is normalised 0-255 and 512x512
If a different size it is rescaled along with groundTruthPoints
groundTruthPoints: Nx2 numpy array
Y and X positions of annotated points along the artery,
Ordering is not important except that start and end points should be top and bottom of the array
segmentationModelWeights: segmentation model weights (pth), optional
Segmentation model weights to use.
If not set the default ones from this paper: https://doi.org/10.1016/j.ijcard.2024.132598
Returns
-------
mask : 512x512 numpy array (int64)
Mask selecting the selected artery, 0 = background and 1 = artery
"""
if segmentationModelWeights is None:
segmentationModelWeights = pooch.retrieve(
url="doi:10.5281/zenodo.13848135/modelWeights-InternalData-inceptionresnetv2-fold2-e40-b10-a4.pth",
known_hash="md5:bf893ef57adaf39cfee33b25c7c1d87b",
)
if inputImage.shape[0] != 512 and inputImage.shape[1] != 512:
ratioYX = numpy.array(
[512.0 / inputImage.shape[0], 512.0 / inputImage.shape[1]]
)
print(
f"arterySegmentation(): Rescaling image to 512x512 by {ratioYX=}, and also applying this to input points"
)
inputImage = scipy.ndimage.zoom(inputImage, ratioYX)
points = groundTruthPoints.copy() * ratioYX
print(inputImage.shape)
else:
points = groundTruthPoints
imageSize = inputImage.shape
n_classes = 2 # binary output
net = predict.smp.Unet(
encoder_name="inceptionresnetv2",
encoder_weights="imagenet",
in_channels=3,
classes=n_classes,
)
net = predict.nn.DataParallel(net)
device = predict.torch.device(
"cuda" if predict.torch.cuda.is_available() else "cpu"
)
net.to(device=device)
net.load_state_dict(
predict.torch.load(segmentationModelWeights, map_location=device)
)
orig_image = Image.fromarray(inputImage)
image = predict.Image.new("RGB", imageSize, (0, 0, 0))
image.paste(orig_image, (0, 0))
imageArray = numpy.array(image).astype("uint8")
# Clear last channels
imageArray[:, :, -1] = 0
imageArray[:, :, -2] = 0
## Get endpoints of skeleton
startPoint = points[0]
endPoint = points[-1]
# End points on Channel 1
for y, x in [startPoint, endPoint]:
y = int(numpy.round(y))
x = int(numpy.round(x))
imageArray[y - 2 : y + 2, x - 2 : x + 2, 1] = 255
# All other points on Channel 2
for y, x in points[1:-1]:
y = int(numpy.round(y))
x = int(numpy.round(x))
imageArray[y - 2 : y + 2, x - 2 : x + 2, 2] = 255
image = Image.fromarray(imageArray.astype(numpy.uint8))
mask = predict.predict_img(
net=net,
dataset_class=utils.dataset.CoronaryDataset,
full_img=image,
scale_factor=1,
device=device,
)
return mask
def maskOutliner(labelledArtery, outlineThickness=3):
# Compute the boundary of the mask
contours, _ = cv2.findContours(
labelledArtery, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
tmp = numpy.zeros_like(labelledArtery)
boundary = cv2.drawContours(tmp, contours, -1, (255, 255, 255), outlineThickness)
boundary = boundary > 0
return boundary
|