File size: 4,787 Bytes
b5cbaa6
 
8e6512c
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6512c
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6512c
 
 
b5cbaa6
8e6512c
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6512c
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
8e6512c
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6512c
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys

import mock
import pytest
import torch

# mock detection module
sys.modules["torchvision._C"] = mock.Mock()
import segmentation_models_pytorch as smp

IS_TRAVIS = os.environ.get("TRAVIS", False)


def get_encoders():
    travis_exclude_encoders = [
        "senet154",
        "resnext101_32x16d",
        "resnext101_32x32d",
        "resnext101_32x48d",
    ]
    encoders = smp.encoders.get_encoder_names()
    if IS_TRAVIS:
        encoders = [e for e in encoders if e not in travis_exclude_encoders]
    return encoders


ENCODERS = get_encoders()
DEFAULT_ENCODER = "resnet18"


def get_sample(model_class):
    if model_class in [
        smp.Unet,
        smp.Linknet,
        smp.FPN,
        smp.PSPNet,
        smp.UnetPlusPlus,
        smp.MAnet,
    ]:
        sample = torch.ones([1, 3, 64, 64])
    elif model_class == smp.PAN:
        sample = torch.ones([2, 3, 256, 256])
    elif model_class == smp.DeepLabV3:
        sample = torch.ones([2, 3, 128, 128])
    else:
        raise ValueError("Not supported model class {}".format(model_class))
    return sample


def _test_forward(model, sample, test_shape=False):
    with torch.no_grad():
        out = model(sample)
    if test_shape:
        assert out.shape[2:] == sample.shape[2:]


def _test_forward_backward(model, sample, test_shape=False):
    out = model(sample)
    out.mean().backward()
    if test_shape:
        assert out.shape[2:] == sample.shape[2:]


@pytest.mark.parametrize("encoder_name", ENCODERS)
@pytest.mark.parametrize("encoder_depth", [3, 5])
@pytest.mark.parametrize(
    "model_class", [smp.FPN, smp.PSPNet, smp.Linknet, smp.Unet, smp.UnetPlusPlus]
)
def test_forward(model_class, encoder_name, encoder_depth, **kwargs):
    if (
        model_class is smp.Unet
        or model_class is smp.UnetPlusPlus
        or model_class is smp.MAnet
    ):
        kwargs["decoder_channels"] = (16, 16, 16, 16, 16)[-encoder_depth:]
    model = model_class(
        encoder_name, encoder_depth=encoder_depth, encoder_weights=None, **kwargs
    )
    sample = get_sample(model_class)
    model.eval()
    if encoder_depth == 5 and model_class != smp.PSPNet:
        test_shape = True
    else:
        test_shape = False

    _test_forward(model, sample, test_shape)


@pytest.mark.parametrize(
    "model_class",
    [
        smp.PAN,
        smp.FPN,
        smp.PSPNet,
        smp.Linknet,
        smp.Unet,
        smp.UnetPlusPlus,
        smp.MAnet,
        smp.DeepLabV3,
    ],
)
def test_forward_backward(model_class):
    sample = get_sample(model_class)
    model = model_class(DEFAULT_ENCODER, encoder_weights=None)
    _test_forward_backward(model, sample)


@pytest.mark.parametrize(
    "model_class",
    [smp.PAN, smp.FPN, smp.PSPNet, smp.Linknet, smp.Unet, smp.UnetPlusPlus, smp.MAnet],
)
def test_aux_output(model_class):
    model = model_class(
        DEFAULT_ENCODER, encoder_weights=None, aux_params=dict(classes=2)
    )
    sample = get_sample(model_class)
    label_size = (sample.shape[0], 2)
    mask, label = model(sample)
    assert label.size() == label_size


@pytest.mark.parametrize("upsampling", [2, 4, 8])
@pytest.mark.parametrize("model_class", [smp.FPN, smp.PSPNet])
def test_upsample(model_class, upsampling):
    default_upsampling = 4 if model_class is smp.FPN else 8
    model = model_class(DEFAULT_ENCODER, encoder_weights=None, upsampling=upsampling)
    sample = get_sample(model_class)
    mask = model(sample)
    assert mask.size()[-1] / 64 == upsampling / default_upsampling


@pytest.mark.parametrize("model_class", [smp.FPN])
@pytest.mark.parametrize("encoder_name", ENCODERS)
@pytest.mark.parametrize("in_channels", [1, 2, 4])
def test_in_channels(model_class, encoder_name, in_channels):
    sample = torch.ones([1, in_channels, 64, 64])
    model = model_class(DEFAULT_ENCODER, encoder_weights=None, in_channels=in_channels)
    model.eval()
    with torch.no_grad():
        model(sample)

    assert model.encoder._in_channels == in_channels


@pytest.mark.parametrize("encoder_name", ENCODERS)
def test_dilation(encoder_name):
    if (
        encoder_name in ["inceptionresnetv2", "xception", "inceptionv4"]
        or encoder_name.startswith("vgg")
        or encoder_name.startswith("densenet")
        or encoder_name.startswith("timm-res")
    ):
        return

    encoder = smp.encoders.get_encoder(encoder_name)
    encoder.make_dilated(
        stage_list=[5],
        dilation_list=[2],
    )

    encoder.eval()
    with torch.no_grad():
        sample = torch.ones([1, 3, 64, 64])
        output = encoder(sample)

    shapes = [out.shape[-1] for out in output]
    assert shapes == [64, 32, 16, 8, 4, 4]  # last downsampling replaced with dilation


if __name__ == "__main__":
    pytest.main([__file__])