Spaces:
Sleeping
Sleeping
File size: 30,872 Bytes
b5cbaa6 5361171 b5cbaa6 c224f9b b5cbaa6 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 b5cbaa6 c224f9b b5cbaa6 a8ab7ac b5cbaa6 a8ab7ac b5cbaa6 a8ab7ac b5cbaa6 a8ab7ac b5cbaa6 a8ab7ac b5cbaa6 a8ab7ac b5cbaa6 cdbc0a9 b5cbaa6 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 5361171 7e92647 b5cbaa6 5440753 b5cbaa6 7e92647 b5cbaa6 a8ab7ac b5cbaa6 7e92647 b5cbaa6 a8ab7ac b5cbaa6 7e92647 b5cbaa6 a8ab7ac 5361171 b5cbaa6 5440753 b5cbaa6 5440753 b5cbaa6 5440753 b5cbaa6 aabc413 b5cbaa6 aabc413 b5cbaa6 aabc413 b5cbaa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
import os
import os.path
import matplotlib.pyplot as plt
import numpy
import pandas as pd
import streamlit as st
import SimpleITK as sitk
import pydicom
import glob
import mpld3
import streamlit.components.v1 as components
import plotly.express as px
import plotly.graph_objects as go
import tifffile
from streamlit_plotly_events import plotly_events
from streamlit_drawable_canvas import st_canvas
from PIL import Image
# from streamlit_image_coordinates import streamlit_image_coordinates
import predict
import angioPyFunctions
import scipy
import cv2
import json
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
st.set_page_config(page_title="Apec Segmentation", layout="wide")
if 'stage' not in st.session_state:
st.session_state.stage = 0
# Make output folder
# os.makedirs(name=outputPath, exist_ok=True)
# arteryDictionary = {
# 'LAD': {'colour': "#f03b20"},
# 'CX': {'colour': "#31a354"},
# 'OM': {'colour' : "#74c476"},
# 'RCA': {'colour': "#08519c"},
# 'AM': {'colour' : "#3182bd"},
# 'LM': {'colour' : "#984ea3"},
# }
# def file_selector(folder_path='.'):
# fileNames = [file for file in glob.glob(f"{folder_path}/*")]
# selectedDicom = st.sidebar.selectbox('Select a DICOM file:', fileNames)
# if selectedDicom is None:
# return None
# return selectedDicom
@st.cache_data
def selectSlice(slice_ix, pixelArray, fileName):
# Save the selected frame
tifffile.imwrite(f"{outputPath}/{fileName}", pixelArray[slice_ix, :, :])
# Set the button as clicked
st.session_state.btnSelectSlice = True
def parse_uploaded_annotations(annotation_data, image_label=None, image_path=None, exclude_categories=None):
"""
Return a list of dicts with `top` and `left` keys from various annotation schemas.
Supports Streamlit canvas JSON and COCO polygon segmentations.
"""
if exclude_categories is None:
exclude_categories = set()
else:
exclude_categories = {str(name).lower() for name in exclude_categories}
if not isinstance(annotation_data, dict):
return [], []
streamlit_objects = annotation_data.get("objects")
if isinstance(streamlit_objects, list) and streamlit_objects:
return streamlit_objects, []
annotations = annotation_data.get("annotations")
images = annotation_data.get("images", [])
categories = annotation_data.get("categories", [])
if not isinstance(annotations, list) or not annotations:
return [], []
category_lookup = {}
for category in categories:
category_id = category.get("id")
category_name = category.get("name", "")
if category_id is not None:
category_lookup[category_id] = category_name
target_filename = None
if image_path:
target_filename = os.path.basename(str(image_path))
elif image_label:
target_filename = os.path.basename(str(image_label))
image_id = None
if target_filename:
for image_entry in images:
file_name = image_entry.get("file_name")
if file_name and os.path.basename(str(file_name)) == target_filename:
image_id = image_entry.get("id")
break
if image_id is None and images:
image_id = images[0].get("id")
if image_id is None:
return [], []
matching_annotations = [
ann for ann in annotations
if ann.get("image_id") == image_id and ann.get("segmentation")
]
collected_polygons = []
primary_points = []
for ann in matching_annotations:
segmentation = ann.get("segmentation")
polygon = None
category_name = category_lookup.get(ann.get("category_id"), "")
if category_name and category_name.lower() in exclude_categories:
continue
if isinstance(segmentation, list):
if segmentation and isinstance(segmentation[0], (list, tuple)):
polygon = segmentation[0]
else:
polygon = segmentation
if not polygon or not isinstance(polygon, (list, tuple)):
continue
coords = [float(coord) for coord in polygon if isinstance(coord, (int, float))]
if len(coords) < 4:
continue
even_length = (len(coords) // 2) * 2
coords = coords[:even_length]
polygon_points = []
for idx in range(0, even_length, 2):
x = coords[idx]
y = coords[idx + 1]
polygon_points.append([x, y])
if not polygon_points:
continue
collected_polygons.append(
{
"points": numpy.array(polygon_points, dtype=numpy.float32),
"category": category_name or f"category_{ann.get('category_id')}",
}
)
if not primary_points:
primary_points = [
{"top": point[1], "left": point[0] - 3.5, "source": "coco"}
for point in polygon_points
]
return primary_points, collected_polygons
DicomFolder = "Dicoms/"
# exampleDicoms = {
# 'RCA2' : 'Dicoms/RCA1',
# 'RCA1' : 'Dicoms/RCA4',
# # 'RCA2' : 'Dicoms/RCA2',
# # 'RCA3' : 'Dicoms/RCA3',
# # 'LCA1' : 'Dicoms/LCA1',
# # 'LCA2' : 'Dicoms/LCA2',
#
# }
exampleDicoms = {}
files = sorted(glob.glob(DicomFolder+"/*"))
for file in files:
exampleDicoms[os.path.basename(file)] = file
# Main text
st.markdown("<h1 style='text-align: center;'>Apec Segmentation</h1>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: center;'> Welcome to <b>Apec Segmentation</b>, an AI-driven, coronary angiography segmentation tool.</h1>", unsafe_allow_html=True)
st.markdown("")
# Build the sidebar
# Select DICOM file: here eventually we will use the file_uploader widget, but for the demo this is deactivate. Instead we will have a choice of 3 anonymised DICOMs to pick from
# selectedDicom = st.sidebar.file_uploader("Upload DICOM file:",type=["dcm"], accept_multiple_files=False)
# def changeSessionState():
# # value += 1
# print("CHANGED!")
input_mode = st.sidebar.radio(
"Input source",
("Example DICOM", "Upload Image"),
key="input_mode_selector",
)
pixelArray = None
selected_label = None
selected_path = None
if input_mode == "Example DICOM":
if exampleDicoms:
DropDownDicom = st.sidebar.selectbox(
"Select example DICOM file:",
options=list(exampleDicoms.keys()),
key="dicomDropDown",
)
selected_label = DropDownDicom
selected_path = exampleDicoms[DropDownDicom]
try:
print(f"Trying to load {selected_path}")
dcm = pydicom.dcmread(selected_path, force=True)
pixelArray = dcm.pixel_array
# Just take first channel if it's RGB?
if len(pixelArray.shape) == 4:
pixelArray = pixelArray[:, :, :, 0]
except Exception as err:
st.sidebar.error(f"Unable to read DICOM '{selected_label}': {err}")
pixelArray = None
else:
st.sidebar.info("Add DICOM files to the `Dicoms/` folder or switch to image upload.")
else:
uploaded_file = st.sidebar.file_uploader(
"Upload angiography frame (PNG or JPG)",
type=["png", "jpg", "jpeg"],
key="uploaded_frame",
)
if uploaded_file is not None:
selected_label = uploaded_file.name
selected_path = uploaded_file.name
try:
uploaded_image = Image.open(uploaded_file)
if uploaded_image.mode != "L":
uploaded_image = uploaded_image.convert("L")
image_array = numpy.array(uploaded_image)
pixelArray = numpy.expand_dims(image_array, axis=0)
except Exception as err:
st.sidebar.error(f"Could not read uploaded image: {err}")
pixelArray = None
stepOne = st.sidebar.expander("STEP ONE", True)
stepTwo = st.sidebar.expander("STEP TWO", True)
# Create tabs
tab1, tab2 = st.tabs(["Segmentation", "Analysis"])
# Increase tab font size
css = '''
<style>
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
font-size:16px;
}
</style>
'''
st.markdown(css, unsafe_allow_html=True)
# while True:
# Once a file is uploaded, the following annotation sequence is initiated
if pixelArray is None:
st.info("Select an example DICOM or upload a PNG/JPG frame to start the segmentation workflow.")
else:
if pixelArray.ndim == 4:
pixelArray = pixelArray[:, :, :, 0]
if pixelArray.ndim == 2:
pixelArray = numpy.expand_dims(pixelArray, axis=0)
n_slices = pixelArray.shape[0]
slice_ix = 0
with tab1:
with stepOne:
st.write("Select frame for annotation. Aim for an end-diastolic frame with good visualisation of the artery of interest.")
if n_slices > 1:
slice_ix = st.slider('Frame', 0, n_slices-1, int(n_slices/2), key='sliceSlider')
predictedMask = numpy.zeros_like(pixelArray[slice_ix, :, :])
with stepTwo:
artery_display_options = {
"LAD - Left Anterior Descending": "LAD",
"CX - Left Circumflex": "CX",
"RCA - Right Coronary Artery": "RCA",
"LM - Left Main (LMCA)": "LM",
"OM - Obtuse Marginal branch (of the CX)": "OM",
"AM - Acute Marginal branch (of the RCA)": "AM",
"D - Diagonal branch (of the LAD)": "D",
}
selected_display = st.selectbox(
"Select artery for annotation:",
list(artery_display_options.keys()),
key="arteryDropMenu",
)
selectedArtery = artery_display_options[selected_display]
st.write("Beginning with the desired start point and finishing at the desired end point, click along the artery aiming for ~5-10 points.")
uploaded_annotation_points = []
uploaded_annotation_polygons = []
annotation_upload = st.file_uploader(
"Optional: Load annotation JSON",
type=["json"],
key="annotation_json_upload",
help="Upload previously saved canvas annotations to reuse the same points.",
)
if annotation_upload is not None:
try:
uploaded_json_raw = annotation_upload.getvalue()
uploaded_annotation_data = json.loads(uploaded_json_raw.decode("utf-8"))
(
uploaded_annotation_points,
uploaded_annotation_polygons,
) = parse_uploaded_annotations(
uploaded_annotation_data,
image_label=selected_label,
image_path=selected_path,
exclude_categories={"Stenosis_region"},
)
if not uploaded_annotation_points and not uploaded_annotation_polygons:
st.warning("Uploaded JSON did not contain any usable annotation points for this view (Stenosis regions are ignored).")
except (json.JSONDecodeError, UnicodeDecodeError) as err:
st.error(f"Could not read annotation JSON: {err}")
uploaded_annotation_points = []
uploaded_annotation_polygons = []
stroke_color = angioPyFunctions.colourTableList[selectedArtery]
catheter_mode = st.checkbox(
"Use catheter calibration (requires known catheter diameter)",
value=False,
key="catheter_calibration_toggle",
help="Enable this if the selected region corresponds to a catheter and you know its diameter in millimetres.",
)
catheter_diameter_mm = None
if catheter_mode:
catheter_diameter_input = st.number_input(
"Known catheter diameter (mm)",
min_value=0.1,
max_value=20.0,
value=2.0,
step=0.1,
key="catheter_diameter_mm_input",
)
if catheter_diameter_input and catheter_diameter_input > 0:
catheter_diameter_mm = float(catheter_diameter_input)
else:
st.warning("Enter a positive catheter diameter to enable millimetre scaling.")
col1, col2 = st.columns((15,15))
with col1:
col1a, col1b, col1c = st.columns((1,10,1))
with col1b:
leftImageText = "<p style='text-align: center; color: white;'>Beginning with the desired <u><b>start point</b></u> and finishing at the desired <u><b>end point</b></u>, click along the artery aiming for ~5-10 points. Segmentation is automatic.</p>"
st.markdown(f"<h5 style='text-align: center; color: white;'>Selected frame</h5>", unsafe_allow_html=True)
st.markdown(leftImageText, unsafe_allow_html=True)
original_frame = pixelArray[slice_ix, :, :]
original_height, original_width = original_frame.shape
selectedFrame = cv2.resize(original_frame, (512,512))
if selectedFrame.dtype != numpy.uint8:
selectedFrameDisplay = numpy.clip(selectedFrame, 0, 255).astype(numpy.uint8)
else:
selectedFrameDisplay = selectedFrame.copy()
canvas_background = selectedFrameDisplay
legend_html = ""
if uploaded_annotation_polygons:
scale_y = 512.0 / original_height
scale_x = 512.0 / original_width
if canvas_background.ndim == 2:
canvas_background_color = numpy.stack([canvas_background] * 3, axis=-1)
else:
canvas_background_color = canvas_background.copy()
category_palette_rgb = [
(228, 26, 28),
(55, 126, 184),
(77, 175, 74),
(152, 78, 163),
(255, 127, 0),
(166, 86, 40),
(247, 129, 191),
(153, 153, 153),
(102, 194, 165),
(141, 160, 203),
]
category_colours = {}
for polygon_entry in uploaded_annotation_polygons:
polygon = polygon_entry.get("points")
if polygon is None or polygon.size < 4:
continue
category_name = polygon_entry.get("category") or "annotation"
if category_name not in category_colours:
rgb = category_palette_rgb[len(category_colours) % len(category_palette_rgb)]
category_colours[category_name] = (rgb[2], rgb[1], rgb[0])
overlay_colour = category_colours[category_name]
scaled_polygon = polygon.copy()
scaled_polygon[:, 0] = scaled_polygon[:, 0] * scale_x
scaled_polygon[:, 1] = scaled_polygon[:, 1] * scale_y
polygon_path = scaled_polygon.reshape((-1, 1, 2)).astype(numpy.int32)
cv2.polylines(
canvas_background_color,
[polygon_path],
isClosed=True,
color=overlay_colour,
thickness=2,
)
canvas_background = canvas_background_color
if category_colours:
legend_items = []
for category_name, colour_bgr in category_colours.items():
colour_rgb = (colour_bgr[2], colour_bgr[1], colour_bgr[0])
legend_items.append(
f"<span style='color: rgb({colour_rgb[0]}, {colour_rgb[1]}, {colour_rgb[2]});'>■</span> {category_name}"
)
legend_html = " ".join(legend_items)
if canvas_background.ndim == 3:
background_np = cv2.cvtColor(canvas_background, cv2.COLOR_BGR2RGB)
else:
background_np = canvas_background
canvas_key = f"canvas-{selected_label}" if selected_label else "canvas-default"
# Create a canvas component
annotationCanvas = st_canvas(
fill_color="red", # Fixed fill color with some opacity
stroke_width=1,
stroke_color="red",
background_color='black',
background_image= Image.fromarray(background_np),
update_streamlit=True,
height=512,
width=512,
drawing_mode="point",
point_display_radius=2,
key=canvas_key,
)
if legend_html:
st.markdown(legend_html, unsafe_allow_html=True)
# Do something interesting with the image data and paths
objects = pd.DataFrame()
raw_annotation_objects = []
if annotationCanvas.json_data:
raw_annotation_objects = annotationCanvas.json_data.get("objects", [])
if not raw_annotation_objects and uploaded_annotation_points:
raw_annotation_objects = uploaded_annotation_points
st.caption(f"Loaded {len(raw_annotation_objects)} annotation points from uploaded JSON.")
if raw_annotation_objects:
objects = pd.json_normalize(raw_annotation_objects) # need to convert obj to str because PyArrow
if len(objects) != 0:
for col in objects.select_dtypes(include=['object']).columns:
objects[col] = objects[col].astype("str")
groundTruthPoints = numpy.vstack(
(
numpy.array(objects['top']),
numpy.array(objects['left']+3.5) # compensate for some streamlit offset or something
)
).T
mask = angioPyFunctions.arterySegmentation(
pixelArray[slice_ix],
groundTruthPoints,
)
predictedMask = predict.CoronaryDataset.mask2image(mask)
# predictedMask = predictedMask.crop((0, 0, imageSize[0], imageSize[1]))
predictedMask = numpy.asarray(predictedMask)
with col2:
col2a, col2b, col2c = st.columns((1,10,1))
with col2b:
st.markdown(f"<h5 style='text-align: center; color: white;'>Predicted mask</h1>", unsafe_allow_html=True)
st.markdown(f"<p style='text-align: center; color: white;'>If the predicted mask has errors, restart and select more points to help the segmentation model. </p>", unsafe_allow_html=True)
stroke_color = "rgba(255, 255, 255, 255)"
maskCanvas = st_canvas(
fill_color=angioPyFunctions.colourTableList[selectedArtery], # Fixed fill color with some opacity
stroke_width=0,
stroke_color=stroke_color,
background_color='black',
background_image= Image.fromarray(predictedMask),
update_streamlit=True,
height=512,
width=512,
drawing_mode="freedraw",
point_display_radius=3,
key="maskCanvas",
)
# Check that the mask array is not blank
if numpy.sum(predictedMask) > 0 and len(objects)>4:
# add alpha channel to predict mask in order to merge
b_channel, g_channel, r_channel = cv2.split(predictedMask)
a_channel = numpy.full_like(predictedMask[:,:,0], fill_value=255)
predictedMaskRGBA = cv2.merge((predictedMask, a_channel))
with tab2:
# combinedMask = cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2RGB)
# print(combinedMask.shape)
# tifffile.imwrite(f"{outputPath}/test.tif", combinedMask)
# tab2Col1, tab2Col2, tab2Col3 = st.columns([1,15,1])
tab2Col1, tab2Col2 = st.columns([20,10])
with tab2Col1:
st.markdown(f"<h5 style='text-align: center; color: white;'><br>Artery profile</h5>", unsafe_allow_html=True)
# Extract thickness information from mask
EDT = scipy.ndimage.distance_transform_edt(cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2GRAY))
# Skeletonise, get a list of ordered centreline points, and spline them
skel = angioPyFunctions.skeletonise(predictedMaskRGBA)
tck = angioPyFunctions.skelSplinerWithThickness(skel=skel, EDT=EDT)
# Interogate the spline function over 1000 points
splinePointsY, splinePointsX, splineThicknesses = scipy.interpolate.splev(
numpy.linspace(
0.0,
1.0,
1000),
tck)
clippingLength = 20
vesselThicknesses = splineThicknesses[clippingLength:-clippingLength]*2
thickness_unit = "pixels"
vesselThicknessesDisplay = vesselThicknesses
calibration_message = None
if catheter_mode and catheter_diameter_mm:
catheter_diameter_pixels = numpy.median(vesselThicknesses)
if catheter_diameter_pixels > 0:
mm_per_pixel = catheter_diameter_mm / catheter_diameter_pixels
vesselThicknessesDisplay = vesselThicknesses * mm_per_pixel
thickness_unit = "mm"
calibration_message = (
f"Calibrated using catheter diameter {catheter_diameter_mm:.2f} mm "
f"(median profile thickness {catheter_diameter_pixels:.2f} pixels → {mm_per_pixel:.4f} mm/pixel)."
)
else:
st.warning("Unable to calibrate: catheter profile thickness is zero pixels.")
fig = px.line(
x=numpy.arange(1,len(vesselThicknessesDisplay)+1),
y=vesselThicknessesDisplay,
labels=dict(x="Centreline point", y=f"Thickness ({thickness_unit})"),
width=800,
)
# fig.update_layout(showlegend=False, xaxis={'showgrid': False, 'zeroline': True})
fig.update_traces(line_color='rgb(31, 119, 180)', textfont_color="white", line={'width':4})
fig.update_xaxes(showline=True, linewidth=2, linecolor='white', showgrid=False,gridcolor='white')
fig.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='white')
fig.update_layout(yaxis_range=[0,numpy.max(vesselThicknessesDisplay)*1.2])
fig.update_layout(font_color="white",title_font_color="white")
fig.update_layout({'plot_bgcolor': 'rgba(0, 0, 0, 0)','paper_bgcolor': 'rgba(0, 0, 0, 0)'})
if calibration_message:
st.caption(calibration_message)
selected_points = plotly_events(
fig,
hover_event=True,
click_event=True,
)
if selected_points:
# Persist the latest hover/click event so the highlight remains visible
st.session_state["artery_profile_hover"] = selected_points[0]
hover_event_data = st.session_state.get("artery_profile_hover")
with tab2Col2:
st.markdown(f"<h5 style='text-align: center; color: white;'><br>Contours</h5>", unsafe_allow_html=True)
selectedFrameRGBA = cv2.cvtColor(selectedFrame, cv2.COLOR_GRAY2RGBA)
contour = angioPyFunctions.maskOutliner(labelledArtery=predictedMaskRGBA[:,:,0], outlineThickness=1)
selectedFrameRGBA[contour, :] = [angioPyFunctions.colourTableList[selectedArtery][2],
angioPyFunctions.colourTableList[selectedArtery][1],
angioPyFunctions.colourTableList[selectedArtery][0],
255]
highlight_center = None
highlight_radius = None
if hover_event_data and "pointNumber" in hover_event_data:
hover_index = hover_event_data.get("pointNumber")
if isinstance(hover_index, (int, numpy.integer)) and 0 <= hover_index < len(vesselThicknesses):
spline_index = clippingLength + hover_index
highlight_center = (
float(splinePointsX[spline_index]),
float(splinePointsY[spline_index]),
)
highlight_radius = float(vesselThicknesses[hover_index] / 2.0)
else:
# Clear stale hover data if it no longer matches the current profile length
st.session_state.pop("artery_profile_hover", None)
hover_event_data = None
fig2 = px.imshow(selectedFrameRGBA)
fig2.update_xaxes(visible=False)
fig2.update_yaxes(visible=False)
fig2.update_layout(margin={"t": 0, "b": 0, "r": 0, "l": 0, "pad": 0},) #remove margins
# fig2.coloraxis(visible=False)
fig2.update_traces(dict(
showscale=False,
coloraxis=None,
colorscale='gray'), selector={'type':'heatmap'})
fig2.add_trace(go.Scatter(x=splinePointsX[clippingLength:-clippingLength], y=splinePointsY[clippingLength:-clippingLength], line=dict(width=1)))
if highlight_center:
fig2.add_trace(
go.Scatter(
x=[highlight_center[0]],
y=[highlight_center[1]],
mode="markers",
marker=dict(size=12, color="yellow", symbol="circle"),
name="Selected location",
showlegend=False,
hoverinfo="skip",
)
)
if highlight_radius and highlight_radius > 0:
fig2.add_shape(
type="circle",
xref="x",
yref="y",
x0=highlight_center[0] - highlight_radius,
x1=highlight_center[0] + highlight_radius,
y0=highlight_center[1] - highlight_radius,
y1=highlight_center[1] + highlight_radius,
line=dict(color="yellow", width=2),
)
st.plotly_chart(fig2, use_container_width=True)
|