File size: 30,872 Bytes
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5361171
b5cbaa6
 
 
 
 
c224f9b
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e92647
5361171
 
 
 
7e92647
 
 
 
 
5361171
7e92647
5361171
 
 
7e92647
5361171
 
 
7e92647
5361171
 
7e92647
 
 
 
 
 
 
 
5361171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e92647
5361171
 
 
 
 
 
7e92647
 
 
5361171
 
 
7e92647
 
 
5361171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e92647
5361171
 
 
7e92647
 
 
 
 
 
 
 
 
 
 
5361171
7e92647
 
 
 
 
5361171
7e92647
5361171
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c224f9b
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
a8ab7ac
 
 
 
 
b5cbaa6
a8ab7ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
a8ab7ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ab7ac
 
 
 
 
 
 
b5cbaa6
a8ab7ac
 
b5cbaa6
 
 
 
 
 
a8ab7ac
 
b5cbaa6
 
 
 
 
 
 
cdbc0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
5361171
7e92647
5361171
 
 
 
 
 
 
 
 
 
 
7e92647
 
 
 
5361171
 
 
7e92647
5361171
7e92647
 
5361171
 
 
7e92647
b5cbaa6
 
 
5440753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
7e92647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
a8ab7ac
 
b5cbaa6
 
 
 
 
 
7e92647
b5cbaa6
 
 
 
 
a8ab7ac
b5cbaa6
 
7e92647
 
b5cbaa6
 
a8ab7ac
5361171
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5440753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
5440753
b5cbaa6
 
 
5440753
 
 
b5cbaa6
aabc413
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabc413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabc413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cbaa6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import os
import os.path
import matplotlib.pyplot as plt
import numpy
import pandas as pd
import streamlit as st
import SimpleITK as sitk
import pydicom
import glob
import mpld3
import streamlit.components.v1 as components
import plotly.express as px
import plotly.graph_objects as go
import tifffile
from streamlit_plotly_events import plotly_events
from streamlit_drawable_canvas import st_canvas
from PIL import Image
# from streamlit_image_coordinates import streamlit_image_coordinates
import predict
import angioPyFunctions
import scipy
import cv2
import json

import ssl

ssl._create_default_https_context = ssl._create_unverified_context

st.set_page_config(page_title="Apec Segmentation", layout="wide")

if 'stage' not in st.session_state:
    st.session_state.stage = 0



# Make output folder
# os.makedirs(name=outputPath, exist_ok=True)

# arteryDictionary = {
#     'LAD':       {'colour': "#f03b20"},
#     'CX':        {'colour': "#31a354"},
#     'OM':    {'colour' : "#74c476"},
#     'RCA':       {'colour': "#08519c"},
#     'AM':   {'colour' : "#3182bd"},
#     'LM':        {'colour' : "#984ea3"},
# }

# def file_selector(folder_path='.'):
#     fileNames = [file for file in glob.glob(f"{folder_path}/*")]
#     selectedDicom = st.sidebar.selectbox('Select a DICOM file:', fileNames)
#     if selectedDicom is None:
#         return None

#     return selectedDicom

@st.cache_data
def selectSlice(slice_ix, pixelArray, fileName):

    # Save the selected frame 
    tifffile.imwrite(f"{outputPath}/{fileName}", pixelArray[slice_ix, :, :])

    # Set the button as clicked
    st.session_state.btnSelectSlice = True


def parse_uploaded_annotations(annotation_data, image_label=None, image_path=None, exclude_categories=None):
    """
    Return a list of dicts with `top` and `left` keys from various annotation schemas.
    Supports Streamlit canvas JSON and COCO polygon segmentations.
    """
    if exclude_categories is None:
        exclude_categories = set()
    else:
        exclude_categories = {str(name).lower() for name in exclude_categories}

    if not isinstance(annotation_data, dict):
        return [], []

    streamlit_objects = annotation_data.get("objects")
    if isinstance(streamlit_objects, list) and streamlit_objects:
        return streamlit_objects, []

    annotations = annotation_data.get("annotations")
    images = annotation_data.get("images", [])
    categories = annotation_data.get("categories", [])

    if not isinstance(annotations, list) or not annotations:
        return [], []

    category_lookup = {}
    for category in categories:
        category_id = category.get("id")
        category_name = category.get("name", "")
        if category_id is not None:
            category_lookup[category_id] = category_name

    target_filename = None
    if image_path:
        target_filename = os.path.basename(str(image_path))
    elif image_label:
        target_filename = os.path.basename(str(image_label))

    image_id = None
    if target_filename:
        for image_entry in images:
            file_name = image_entry.get("file_name")
            if file_name and os.path.basename(str(file_name)) == target_filename:
                image_id = image_entry.get("id")
                break

    if image_id is None and images:
        image_id = images[0].get("id")

    if image_id is None:
        return [], []

    matching_annotations = [
        ann for ann in annotations
        if ann.get("image_id") == image_id and ann.get("segmentation")
    ]

    collected_polygons = []
    primary_points = []

    for ann in matching_annotations:
        segmentation = ann.get("segmentation")
        polygon = None
        category_name = category_lookup.get(ann.get("category_id"), "")
        if category_name and category_name.lower() in exclude_categories:
            continue

        if isinstance(segmentation, list):
            if segmentation and isinstance(segmentation[0], (list, tuple)):
                polygon = segmentation[0]
            else:
                polygon = segmentation

        if not polygon or not isinstance(polygon, (list, tuple)):
            continue

        coords = [float(coord) for coord in polygon if isinstance(coord, (int, float))]
        if len(coords) < 4:
            continue

        even_length = (len(coords) // 2) * 2
        coords = coords[:even_length]

        polygon_points = []
        for idx in range(0, even_length, 2):
            x = coords[idx]
            y = coords[idx + 1]
            polygon_points.append([x, y])

        if not polygon_points:
            continue

        collected_polygons.append(
            {
                "points": numpy.array(polygon_points, dtype=numpy.float32),
                "category": category_name or f"category_{ann.get('category_id')}",
            }
        )

        if not primary_points:
            primary_points = [
                {"top": point[1], "left": point[0] - 3.5, "source": "coco"}
                for point in polygon_points
            ]

    return primary_points, collected_polygons


DicomFolder = "Dicoms/"
# exampleDicoms = {
#     'RCA2' : 'Dicoms/RCA1',
#     'RCA1' : 'Dicoms/RCA4',
#     # 'RCA2' : 'Dicoms/RCA2',
#     # 'RCA3' : 'Dicoms/RCA3',
#     # 'LCA1' : 'Dicoms/LCA1',
#     # 'LCA2' : 'Dicoms/LCA2',
# 
# }
exampleDicoms = {}
files = sorted(glob.glob(DicomFolder+"/*"))
for file in files:
    exampleDicoms[os.path.basename(file)] = file

# Main text
st.markdown("<h1 style='text-align: center;'>Apec Segmentation</h1>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: center;'> Welcome to <b>Apec Segmentation</b>, an AI-driven, coronary angiography segmentation tool.</h1>", unsafe_allow_html=True)
st.markdown("")

# Build the sidebar
# Select DICOM file: here eventually we will use the file_uploader widget, but for the demo this is deactivate. Instead we will have a choice of 3 anonymised DICOMs to pick from
# selectedDicom = st.sidebar.file_uploader("Upload DICOM file:",type=["dcm"], accept_multiple_files=False)

# def changeSessionState():

#     # value += 1

#     print("CHANGED!")

input_mode = st.sidebar.radio(
    "Input source",
    ("Example DICOM", "Upload Image"),
    key="input_mode_selector",
)

pixelArray = None
selected_label = None
selected_path = None

if input_mode == "Example DICOM":
    if exampleDicoms:
        DropDownDicom = st.sidebar.selectbox(
            "Select example DICOM file:",
            options=list(exampleDicoms.keys()),
            key="dicomDropDown",
        )

        selected_label = DropDownDicom
        selected_path = exampleDicoms[DropDownDicom]

        try:
            print(f"Trying to load {selected_path}")
            dcm = pydicom.dcmread(selected_path, force=True)

            pixelArray = dcm.pixel_array

            # Just take first channel if it's RGB?
            if len(pixelArray.shape) == 4:
                pixelArray = pixelArray[:, :, :, 0]
        except Exception as err:
            st.sidebar.error(f"Unable to read DICOM '{selected_label}': {err}")
            pixelArray = None
    else:
        st.sidebar.info("Add DICOM files to the `Dicoms/` folder or switch to image upload.")
else:
    uploaded_file = st.sidebar.file_uploader(
        "Upload angiography frame (PNG or JPG)",
        type=["png", "jpg", "jpeg"],
        key="uploaded_frame",
    )

    if uploaded_file is not None:
        selected_label = uploaded_file.name
        selected_path = uploaded_file.name

        try:
            uploaded_image = Image.open(uploaded_file)
            if uploaded_image.mode != "L":
                uploaded_image = uploaded_image.convert("L")

            image_array = numpy.array(uploaded_image)
            pixelArray = numpy.expand_dims(image_array, axis=0)
        except Exception as err:
            st.sidebar.error(f"Could not read uploaded image: {err}")
            pixelArray = None

stepOne = st.sidebar.expander("STEP ONE", True)
stepTwo = st.sidebar.expander("STEP TWO", True)

# Create tabs 
tab1, tab2 = st.tabs(["Segmentation", "Analysis"])

# Increase tab font size
css = '''
<style>
    .stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
    font-size:16px;
    }
</style>
'''

st.markdown(css, unsafe_allow_html=True)

# while True:
# Once a file is uploaded, the following annotation sequence is initiated 
if pixelArray is None:
        st.info("Select an example DICOM or upload a PNG/JPG frame to start the segmentation workflow.")
else:
        if pixelArray.ndim == 4:
            pixelArray = pixelArray[:, :, :, 0]
        if pixelArray.ndim == 2:
            pixelArray = numpy.expand_dims(pixelArray, axis=0)

        n_slices = pixelArray.shape[0]
        slice_ix = 0

        with tab1:

            with stepOne:
                st.write("Select frame for annotation. Aim for an end-diastolic frame with good visualisation of the artery of interest.")

                if n_slices > 1:
                    slice_ix = st.slider('Frame', 0, n_slices-1, int(n_slices/2), key='sliceSlider')


                predictedMask = numpy.zeros_like(pixelArray[slice_ix, :, :])


            with stepTwo:

                artery_display_options = {
                    "LAD - Left Anterior Descending": "LAD",
                    "CX - Left Circumflex": "CX",
                    "RCA - Right Coronary Artery": "RCA",
                    "LM - Left Main (LMCA)": "LM",
                    "OM - Obtuse Marginal branch (of the CX)": "OM",
                    "AM - Acute Marginal branch (of the RCA)": "AM",
                    "D - Diagonal branch (of the LAD)": "D",
                }

                selected_display = st.selectbox(
                    "Select artery for annotation:",
                    list(artery_display_options.keys()),
                    key="arteryDropMenu",
                )

                selectedArtery = artery_display_options[selected_display]

                st.write("Beginning with the desired start point and finishing at the desired end point, click along the artery aiming for ~5-10 points.")

                uploaded_annotation_points = []
                uploaded_annotation_polygons = []
                annotation_upload = st.file_uploader(
                    "Optional: Load annotation JSON",
                    type=["json"],
                    key="annotation_json_upload",
                    help="Upload previously saved canvas annotations to reuse the same points.",
                )

                if annotation_upload is not None:
                    try:
                        uploaded_json_raw = annotation_upload.getvalue()
                        uploaded_annotation_data = json.loads(uploaded_json_raw.decode("utf-8"))
                        (
                            uploaded_annotation_points,
                            uploaded_annotation_polygons,
                        ) = parse_uploaded_annotations(
                            uploaded_annotation_data,
                            image_label=selected_label,
                            image_path=selected_path,
                            exclude_categories={"Stenosis_region"},
                        )
                        if not uploaded_annotation_points and not uploaded_annotation_polygons:
                            st.warning("Uploaded JSON did not contain any usable annotation points for this view (Stenosis regions are ignored).")
                    except (json.JSONDecodeError, UnicodeDecodeError) as err:
                        st.error(f"Could not read annotation JSON: {err}")
                        uploaded_annotation_points = []
                        uploaded_annotation_polygons = []

                stroke_color = angioPyFunctions.colourTableList[selectedArtery]

                catheter_mode = st.checkbox(
                    "Use catheter calibration (requires known catheter diameter)",
                    value=False,
                    key="catheter_calibration_toggle",
                    help="Enable this if the selected region corresponds to a catheter and you know its diameter in millimetres.",
                )

                catheter_diameter_mm = None
                if catheter_mode:
                    catheter_diameter_input = st.number_input(
                        "Known catheter diameter (mm)",
                        min_value=0.1,
                        max_value=20.0,
                        value=2.0,
                        step=0.1,
                        key="catheter_diameter_mm_input",
                    )
                    if catheter_diameter_input and catheter_diameter_input > 0:
                        catheter_diameter_mm = float(catheter_diameter_input)
                    else:
                        st.warning("Enter a positive catheter diameter to enable millimetre scaling.")


            col1, col2 = st.columns((15,15))

            with col1:
                col1a, col1b, col1c = st.columns((1,10,1))

                with col1b:

                    leftImageText = "<p style='text-align: center; color: white;'>Beginning with the desired <u><b>start point</b></u> and finishing at the desired <u><b>end point</b></u>, click along the artery aiming for ~5-10 points. Segmentation is automatic.</p>"

                    st.markdown(f"<h5 style='text-align: center; color: white;'>Selected frame</h5>", unsafe_allow_html=True)

                    st.markdown(leftImageText, unsafe_allow_html=True)

                    original_frame = pixelArray[slice_ix, :, :]
                    original_height, original_width = original_frame.shape

                    selectedFrame = cv2.resize(original_frame, (512,512))

                    if selectedFrame.dtype != numpy.uint8:
                        selectedFrameDisplay = numpy.clip(selectedFrame, 0, 255).astype(numpy.uint8)
                    else:
                        selectedFrameDisplay = selectedFrame.copy()

                    canvas_background = selectedFrameDisplay
                    legend_html = ""
                    if uploaded_annotation_polygons:
                        scale_y = 512.0 / original_height
                        scale_x = 512.0 / original_width
                        if canvas_background.ndim == 2:
                            canvas_background_color = numpy.stack([canvas_background] * 3, axis=-1)
                        else:
                            canvas_background_color = canvas_background.copy()

                        category_palette_rgb = [
                            (228, 26, 28),
                            (55, 126, 184),
                            (77, 175, 74),
                            (152, 78, 163),
                            (255, 127, 0),
                            (166, 86, 40),
                            (247, 129, 191),
                            (153, 153, 153),
                            (102, 194, 165),
                            (141, 160, 203),
                        ]
                        category_colours = {}

                        for polygon_entry in uploaded_annotation_polygons:
                            polygon = polygon_entry.get("points")
                            if polygon is None or polygon.size < 4:
                                continue

                            category_name = polygon_entry.get("category") or "annotation"
                            if category_name not in category_colours:
                                rgb = category_palette_rgb[len(category_colours) % len(category_palette_rgb)]
                                category_colours[category_name] = (rgb[2], rgb[1], rgb[0])

                            overlay_colour = category_colours[category_name]

                            scaled_polygon = polygon.copy()
                            scaled_polygon[:, 0] = scaled_polygon[:, 0] * scale_x
                            scaled_polygon[:, 1] = scaled_polygon[:, 1] * scale_y

                            polygon_path = scaled_polygon.reshape((-1, 1, 2)).astype(numpy.int32)
                            cv2.polylines(
                                canvas_background_color,
                                [polygon_path],
                                isClosed=True,
                                color=overlay_colour,
                                thickness=2,
                            )
                        canvas_background = canvas_background_color
                        if category_colours:
                            legend_items = []
                            for category_name, colour_bgr in category_colours.items():
                                colour_rgb = (colour_bgr[2], colour_bgr[1], colour_bgr[0])
                                legend_items.append(
                                    f"<span style='color: rgb({colour_rgb[0]}, {colour_rgb[1]}, {colour_rgb[2]});'>&#9632;</span> {category_name}"
                                )
                            legend_html = " ".join(legend_items)

                    if canvas_background.ndim == 3:
                        background_np = cv2.cvtColor(canvas_background, cv2.COLOR_BGR2RGB)
                    else:
                        background_np = canvas_background

                    canvas_key = f"canvas-{selected_label}" if selected_label else "canvas-default"

                    # Create a canvas component
                    annotationCanvas = st_canvas(
                        fill_color="red",  # Fixed fill color with some opacity
                        stroke_width=1,
                        stroke_color="red",
                        background_color='black',
                        background_image= Image.fromarray(background_np),
                        update_streamlit=True,
                        height=512,
                        width=512,
                        drawing_mode="point",
                        point_display_radius=2,
                        key=canvas_key,
                    )

                    if legend_html:
                        st.markdown(legend_html, unsafe_allow_html=True)

                    # Do something interesting with the image data and paths
                    objects = pd.DataFrame()
                    raw_annotation_objects = []

                    if annotationCanvas.json_data:
                        raw_annotation_objects = annotationCanvas.json_data.get("objects", [])

                    if not raw_annotation_objects and uploaded_annotation_points:
                        raw_annotation_objects = uploaded_annotation_points
                        st.caption(f"Loaded {len(raw_annotation_objects)} annotation points from uploaded JSON.")

                    if raw_annotation_objects:
                        objects = pd.json_normalize(raw_annotation_objects) # need to convert obj to str because PyArrow

                        if len(objects) != 0:

                            for col in objects.select_dtypes(include=['object']).columns:
                                objects[col] = objects[col].astype("str")

                            groundTruthPoints = numpy.vstack(
                                (
                                    numpy.array(objects['top']),
                                    numpy.array(objects['left']+3.5) # compensate for some streamlit offset or something
                                )
                            ).T

                            mask = angioPyFunctions.arterySegmentation(
                                pixelArray[slice_ix],
                                groundTruthPoints,
                            )
                            predictedMask = predict.CoronaryDataset.mask2image(mask)
                            # predictedMask = predictedMask.crop((0, 0, imageSize[0], imageSize[1]))
                            predictedMask = numpy.asarray(predictedMask)
            with col2:
                col2a, col2b, col2c = st.columns((1,10,1))

                with col2b:
                    st.markdown(f"<h5 style='text-align: center; color: white;'>Predicted mask</h1>", unsafe_allow_html=True)
                    st.markdown(f"<p style='text-align: center; color: white;'>If the predicted mask has errors, restart and select more points to help the segmentation model. </p>", unsafe_allow_html=True)

                    stroke_color = "rgba(255, 255, 255, 255)"

                    maskCanvas = st_canvas(
                        fill_color=angioPyFunctions.colourTableList[selectedArtery],  # Fixed fill color with some opacity
                        stroke_width=0,
                        stroke_color=stroke_color,
                        background_color='black',
                        background_image= Image.fromarray(predictedMask),
                        update_streamlit=True,
                        height=512,
                        width=512,
                        drawing_mode="freedraw",
                        point_display_radius=3,
                        key="maskCanvas",
                    )


                    # Check that the mask array is not blank
                    if numpy.sum(predictedMask) > 0 and len(objects)>4:
                        # add alpha channel to predict mask in order to merge
                        b_channel, g_channel, r_channel = cv2.split(predictedMask)
                        a_channel = numpy.full_like(predictedMask[:,:,0], fill_value=255)

                        predictedMaskRGBA = cv2.merge((predictedMask, a_channel))


                        with tab2:
                            # combinedMask = cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2RGB)

                            # print(combinedMask.shape)
                            # tifffile.imwrite(f"{outputPath}/test.tif", combinedMask)


                            # tab2Col1, tab2Col2, tab2Col3 = st.columns([1,15,1])
                            tab2Col1, tab2Col2 = st.columns([20,10])

                            with tab2Col1:
                                st.markdown(f"<h5 style='text-align: center; color: white;'><br>Artery profile</h5>", unsafe_allow_html=True)

                                # Extract thickness information from mask
                                EDT = scipy.ndimage.distance_transform_edt(cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2GRAY))

                                # Skeletonise, get a list of ordered centreline points, and spline them
                                skel = angioPyFunctions.skeletonise(predictedMaskRGBA)
                                tck = angioPyFunctions.skelSplinerWithThickness(skel=skel, EDT=EDT)

                                # Interogate the spline function over 1000 points
                                splinePointsY, splinePointsX, splineThicknesses = scipy.interpolate.splev(
                                numpy.linspace(
                                    0.0,
                                    1.0,
                                    1000), 
                                    tck)

                                clippingLength = 20

                                vesselThicknesses = splineThicknesses[clippingLength:-clippingLength]*2
                                thickness_unit = "pixels"
                                vesselThicknessesDisplay = vesselThicknesses
                                calibration_message = None
                                if catheter_mode and catheter_diameter_mm:
                                    catheter_diameter_pixels = numpy.median(vesselThicknesses)
                                    if catheter_diameter_pixels > 0:
                                        mm_per_pixel = catheter_diameter_mm / catheter_diameter_pixels
                                        vesselThicknessesDisplay = vesselThicknesses * mm_per_pixel
                                        thickness_unit = "mm"
                                        calibration_message = (
                                            f"Calibrated using catheter diameter {catheter_diameter_mm:.2f} mm "
                                            f"(median profile thickness {catheter_diameter_pixels:.2f} pixels → {mm_per_pixel:.4f} mm/pixel)."
                                        )
                                    else:
                                        st.warning("Unable to calibrate: catheter profile thickness is zero pixels.")

                                fig = px.line(
                                    x=numpy.arange(1,len(vesselThicknessesDisplay)+1),
                                    y=vesselThicknessesDisplay,
                                    labels=dict(x="Centreline point", y=f"Thickness ({thickness_unit})"),
                                    width=800,
                                )
                                # fig.update_layout(showlegend=False, xaxis={'showgrid': False, 'zeroline': True})
                                fig.update_traces(line_color='rgb(31, 119, 180)', textfont_color="white", line={'width':4})
                                fig.update_xaxes(showline=True, linewidth=2, linecolor='white', showgrid=False,gridcolor='white')
                                fig.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='white')

                                fig.update_layout(yaxis_range=[0,numpy.max(vesselThicknessesDisplay)*1.2])
                                fig.update_layout(font_color="white",title_font_color="white")
                                fig.update_layout({'plot_bgcolor': 'rgba(0, 0, 0, 0)','paper_bgcolor': 'rgba(0, 0, 0, 0)'})

                                if calibration_message:
                                    st.caption(calibration_message)


                                selected_points = plotly_events(
                                    fig,
                                    hover_event=True,
                                    click_event=True,
                                )

                                if selected_points:
                                    # Persist the latest hover/click event so the highlight remains visible
                                    st.session_state["artery_profile_hover"] = selected_points[0]

                                hover_event_data = st.session_state.get("artery_profile_hover")



                            with tab2Col2:

                                st.markdown(f"<h5 style='text-align: center; color: white;'><br>Contours</h5>", unsafe_allow_html=True)


                                selectedFrameRGBA = cv2.cvtColor(selectedFrame, cv2.COLOR_GRAY2RGBA)

                                contour = angioPyFunctions.maskOutliner(labelledArtery=predictedMaskRGBA[:,:,0], outlineThickness=1)

                                selectedFrameRGBA[contour, :] =    [angioPyFunctions.colourTableList[selectedArtery][2],
                                                                    angioPyFunctions.colourTableList[selectedArtery][1],
                                                                    angioPyFunctions.colourTableList[selectedArtery][0],
                                                                    255]

                                highlight_center = None
                                highlight_radius = None

                                if hover_event_data and "pointNumber" in hover_event_data:
                                    hover_index = hover_event_data.get("pointNumber")
                                    if isinstance(hover_index, (int, numpy.integer)) and 0 <= hover_index < len(vesselThicknesses):
                                        spline_index = clippingLength + hover_index
                                        highlight_center = (
                                            float(splinePointsX[spline_index]),
                                            float(splinePointsY[spline_index]),
                                        )
                                        highlight_radius = float(vesselThicknesses[hover_index] / 2.0)
                                    else:
                                        # Clear stale hover data if it no longer matches the current profile length
                                        st.session_state.pop("artery_profile_hover", None)
                                        hover_event_data = None

                                fig2 = px.imshow(selectedFrameRGBA)


                                fig2.update_xaxes(visible=False)
                                fig2.update_yaxes(visible=False)
                                fig2.update_layout(margin={"t": 0, "b": 0, "r": 0, "l": 0, "pad": 0},) #remove margins
                                # fig2.coloraxis(visible=False)

                                fig2.update_traces(dict(
                                    showscale=False, 
                                    coloraxis=None, 
                                    colorscale='gray'), selector={'type':'heatmap'})

                                fig2.add_trace(go.Scatter(x=splinePointsX[clippingLength:-clippingLength], y=splinePointsY[clippingLength:-clippingLength], line=dict(width=1)))

                                if highlight_center:
                                    fig2.add_trace(
                                        go.Scatter(
                                            x=[highlight_center[0]],
                                            y=[highlight_center[1]],
                                            mode="markers",
                                            marker=dict(size=12, color="yellow", symbol="circle"),
                                            name="Selected location",
                                            showlegend=False,
                                            hoverinfo="skip",
                                        )
                                    )

                                    if highlight_radius and highlight_radius > 0:
                                        fig2.add_shape(
                                            type="circle",
                                            xref="x",
                                            yref="y",
                                            x0=highlight_center[0] - highlight_radius,
                                            x1=highlight_center[0] + highlight_radius,
                                            y0=highlight_center[1] - highlight_radius,
                                            y1=highlight_center[1] + highlight_radius,
                                            line=dict(color="yellow", width=2),
                                        )

                                st.plotly_chart(fig2, use_container_width=True)