Spaces:
Sleeping
Sleeping
| import segmentation_models_pytorch as smp | |
| encoders = smp.encoders.encoders | |
| WIDTH = 32 | |
| COLUMNS = [ | |
| "Encoder", | |
| "Weights", | |
| "Params, M", | |
| ] | |
| def wrap_row(r): | |
| return "|{}|".format(r) | |
| header = "|".join([column.ljust(WIDTH, " ") for column in COLUMNS]) | |
| separator = "|".join( | |
| ["-" * WIDTH] + [":" + "-" * (WIDTH - 2) + ":"] * (len(COLUMNS) - 1) | |
| ) | |
| print(wrap_row(header)) | |
| print(wrap_row(separator)) | |
| for encoder_name, encoder in encoders.items(): | |
| weights = "<br>".join(encoder["pretrained_settings"].keys()) | |
| encoder_name = encoder_name.ljust(WIDTH, " ") | |
| weights = weights.ljust(WIDTH, " ") | |
| model = encoder["encoder"](**encoder["params"], depth=5) | |
| params = sum(p.numel() for p in model.parameters()) | |
| params = str(params // 1000000) + "M" | |
| params = params.ljust(WIDTH, " ") | |
| row = "|".join([encoder_name, weights, params]) | |
| print(wrap_row(row)) | |