--- title: APEC Angiography Segmentation emoji: 🫀 colorFrom: red colorTo: pink sdk: streamlit sdk_version: 1.28.1 app_file: app.py pinned: false --- # Apec Segmentation ## Apec paper Please see [here](https://doi.org/10.1016/j.ijcard.2024.132598) for our paper in the International Journal of Cardiology Please cite it! > Mahendiran, T., Thanou, D., Senouf, O., Jamaa, Y., Fournier, S., De Bruyne, B., ... & Andò, E. (2025). Apec Segmentation: An open-source, user-guided deep learning tool for coronary artery segmentation. International journal of cardiology, 418, 132598. ## Apec in the news Apec segmentation is being used in [this RTS reportage on AI in Cardiology](https://www.rts.ch/play/tv/19h30/video/lia-fait-irruption-en-cardiologie-et-redefinit-le-role-des-medecins?urn=urn:rts:video:15479233) (in French) ## Online Example Please visit https://imaging.epfl.ch/angiopy-segmentation/ for a live demo of this code on some example DICOM images ![](illustration.mp4) ## Description This software allows single arteries to be segmented given a few clicks on a single time frame with a PyTorch 2 Deep Learning model. ## Installing and running - Install dependencies: ` pip install -r requirements.txt` - Launch Streamlit Web Interface: `streamlit run angioPySegmentation.py --server.fileWatcherType none` ...a website should pop up in your browser! You need to create a /Dicom folder and put some angiography DICOMs in there # How to run the project ## Create virtual environment and activate it ```bash uv venv source .venv/bin/activate uv pip install -r requirements.txt ```