import os import os.path import matplotlib.pyplot as plt import numpy import pandas as pd import streamlit as st import SimpleITK as sitk import pydicom import glob import mpld3 import streamlit.components.v1 as components import plotly.express as px import plotly.graph_objects as go import tifffile from streamlit_plotly_events import plotly_events from streamlit_drawable_canvas import st_canvas from PIL import Image # from streamlit_image_coordinates import streamlit_image_coordinates import predict import angioPyFunctions import scipy import cv2 import json import ssl ssl._create_default_https_context = ssl._create_unverified_context st.set_page_config(page_title="Apec Segmentation", layout="wide") if 'stage' not in st.session_state: st.session_state.stage = 0 # Make output folder # os.makedirs(name=outputPath, exist_ok=True) # arteryDictionary = { # 'LAD': {'colour': "#f03b20"}, # 'CX': {'colour': "#31a354"}, # 'OM': {'colour' : "#74c476"}, # 'RCA': {'colour': "#08519c"}, # 'AM': {'colour' : "#3182bd"}, # 'LM': {'colour' : "#984ea3"}, # } # def file_selector(folder_path='.'): # fileNames = [file for file in glob.glob(f"{folder_path}/*")] # selectedDicom = st.sidebar.selectbox('Select a DICOM file:', fileNames) # if selectedDicom is None: # return None # return selectedDicom @st.cache_data def selectSlice(slice_ix, pixelArray, fileName): # Save the selected frame tifffile.imwrite(f"{outputPath}/{fileName}", pixelArray[slice_ix, :, :]) # Set the button as clicked st.session_state.btnSelectSlice = True def parse_uploaded_annotations(annotation_data, image_label=None, image_path=None, exclude_categories=None): """ Return a list of dicts with `top` and `left` keys from various annotation schemas. Supports Streamlit canvas JSON and COCO polygon segmentations. """ if exclude_categories is None: exclude_categories = set() else: exclude_categories = {str(name).lower() for name in exclude_categories} if not isinstance(annotation_data, dict): return [], [] streamlit_objects = annotation_data.get("objects") if isinstance(streamlit_objects, list) and streamlit_objects: return streamlit_objects, [] annotations = annotation_data.get("annotations") images = annotation_data.get("images", []) categories = annotation_data.get("categories", []) if not isinstance(annotations, list) or not annotations: return [], [] category_lookup = {} for category in categories: category_id = category.get("id") category_name = category.get("name", "") if category_id is not None: category_lookup[category_id] = category_name target_filename = None if image_path: target_filename = os.path.basename(str(image_path)) elif image_label: target_filename = os.path.basename(str(image_label)) image_id = None if target_filename: for image_entry in images: file_name = image_entry.get("file_name") if file_name and os.path.basename(str(file_name)) == target_filename: image_id = image_entry.get("id") break if image_id is None and images: image_id = images[0].get("id") if image_id is None: return [], [] matching_annotations = [ ann for ann in annotations if ann.get("image_id") == image_id and ann.get("segmentation") ] collected_polygons = [] primary_points = [] for ann in matching_annotations: segmentation = ann.get("segmentation") polygon = None category_name = category_lookup.get(ann.get("category_id"), "") if category_name and category_name.lower() in exclude_categories: continue if isinstance(segmentation, list): if segmentation and isinstance(segmentation[0], (list, tuple)): polygon = segmentation[0] else: polygon = segmentation if not polygon or not isinstance(polygon, (list, tuple)): continue coords = [float(coord) for coord in polygon if isinstance(coord, (int, float))] if len(coords) < 4: continue even_length = (len(coords) // 2) * 2 coords = coords[:even_length] polygon_points = [] for idx in range(0, even_length, 2): x = coords[idx] y = coords[idx + 1] polygon_points.append([x, y]) if not polygon_points: continue collected_polygons.append( { "points": numpy.array(polygon_points, dtype=numpy.float32), "category": category_name or f"category_{ann.get('category_id')}", } ) if not primary_points: primary_points = [ {"top": point[1], "left": point[0] - 3.5, "source": "coco"} for point in polygon_points ] return primary_points, collected_polygons DicomFolder = "Dicoms/" # exampleDicoms = { # 'RCA2' : 'Dicoms/RCA1', # 'RCA1' : 'Dicoms/RCA4', # # 'RCA2' : 'Dicoms/RCA2', # # 'RCA3' : 'Dicoms/RCA3', # # 'LCA1' : 'Dicoms/LCA1', # # 'LCA2' : 'Dicoms/LCA2', # # } exampleDicoms = {} files = sorted(glob.glob(DicomFolder+"/*")) for file in files: exampleDicoms[os.path.basename(file)] = file # Main text st.markdown("

Apec Segmentation

", unsafe_allow_html=True) st.markdown("
Welcome to Apec Segmentation, an AI-driven, coronary angiography segmentation tool.
", unsafe_allow_html=True) st.markdown("") # Build the sidebar # Select DICOM file: here eventually we will use the file_uploader widget, but for the demo this is deactivate. Instead we will have a choice of 3 anonymised DICOMs to pick from # selectedDicom = st.sidebar.file_uploader("Upload DICOM file:",type=["dcm"], accept_multiple_files=False) # def changeSessionState(): # # value += 1 # print("CHANGED!") input_mode = st.sidebar.radio( "Input source", ("Example DICOM", "Upload Image"), key="input_mode_selector", ) pixelArray = None selected_label = None selected_path = None if input_mode == "Example DICOM": if exampleDicoms: DropDownDicom = st.sidebar.selectbox( "Select example DICOM file:", options=list(exampleDicoms.keys()), key="dicomDropDown", ) selected_label = DropDownDicom selected_path = exampleDicoms[DropDownDicom] try: print(f"Trying to load {selected_path}") dcm = pydicom.dcmread(selected_path, force=True) pixelArray = dcm.pixel_array # Just take first channel if it's RGB? if len(pixelArray.shape) == 4: pixelArray = pixelArray[:, :, :, 0] except Exception as err: st.sidebar.error(f"Unable to read DICOM '{selected_label}': {err}") pixelArray = None else: st.sidebar.info("Add DICOM files to the `Dicoms/` folder or switch to image upload.") else: uploaded_file = st.sidebar.file_uploader( "Upload angiography frame (PNG or JPG)", type=["png", "jpg", "jpeg"], key="uploaded_frame", ) if uploaded_file is not None: selected_label = uploaded_file.name selected_path = uploaded_file.name try: uploaded_image = Image.open(uploaded_file) if uploaded_image.mode != "L": uploaded_image = uploaded_image.convert("L") image_array = numpy.array(uploaded_image) pixelArray = numpy.expand_dims(image_array, axis=0) except Exception as err: st.sidebar.error(f"Could not read uploaded image: {err}") pixelArray = None stepOne = st.sidebar.expander("STEP ONE", True) stepTwo = st.sidebar.expander("STEP TWO", True) # Create tabs tab1, tab2 = st.tabs(["Segmentation", "Analysis"]) # Increase tab font size css = ''' ''' st.markdown(css, unsafe_allow_html=True) # while True: # Once a file is uploaded, the following annotation sequence is initiated if pixelArray is None: st.info("Select an example DICOM or upload a PNG/JPG frame to start the segmentation workflow.") else: if pixelArray.ndim == 4: pixelArray = pixelArray[:, :, :, 0] if pixelArray.ndim == 2: pixelArray = numpy.expand_dims(pixelArray, axis=0) n_slices = pixelArray.shape[0] slice_ix = 0 with tab1: with stepOne: st.write("Select frame for annotation. Aim for an end-diastolic frame with good visualisation of the artery of interest.") if n_slices > 1: slice_ix = st.slider('Frame', 0, n_slices-1, int(n_slices/2), key='sliceSlider') predictedMask = numpy.zeros_like(pixelArray[slice_ix, :, :]) with stepTwo: artery_display_options = { "LAD - Left Anterior Descending": "LAD", "CX - Left Circumflex": "CX", "RCA - Right Coronary Artery": "RCA", "LM - Left Main (LMCA)": "LM", "OM - Obtuse Marginal branch (of the CX)": "OM", "AM - Acute Marginal branch (of the RCA)": "AM", "D - Diagonal branch (of the LAD)": "D", } selected_display = st.selectbox( "Select artery for annotation:", list(artery_display_options.keys()), key="arteryDropMenu", ) selectedArtery = artery_display_options[selected_display] st.write("Beginning with the desired start point and finishing at the desired end point, click along the artery aiming for ~5-10 points.") uploaded_annotation_points = [] uploaded_annotation_polygons = [] annotation_upload = st.file_uploader( "Optional: Load annotation JSON", type=["json"], key="annotation_json_upload", help="Upload previously saved canvas annotations to reuse the same points.", ) if annotation_upload is not None: try: uploaded_json_raw = annotation_upload.getvalue() uploaded_annotation_data = json.loads(uploaded_json_raw.decode("utf-8")) ( uploaded_annotation_points, uploaded_annotation_polygons, ) = parse_uploaded_annotations( uploaded_annotation_data, image_label=selected_label, image_path=selected_path, exclude_categories={"Stenosis_region"}, ) if not uploaded_annotation_points and not uploaded_annotation_polygons: st.warning("Uploaded JSON did not contain any usable annotation points for this view (Stenosis regions are ignored).") except (json.JSONDecodeError, UnicodeDecodeError) as err: st.error(f"Could not read annotation JSON: {err}") uploaded_annotation_points = [] uploaded_annotation_polygons = [] stroke_color = angioPyFunctions.colourTableList[selectedArtery] catheter_mode = st.checkbox( "Use catheter calibration (requires known catheter diameter)", value=False, key="catheter_calibration_toggle", help="Enable this if the selected region corresponds to a catheter and you know its diameter in millimetres.", ) catheter_diameter_mm = None if catheter_mode: catheter_diameter_input = st.number_input( "Known catheter diameter (mm)", min_value=0.1, max_value=20.0, value=2.0, step=0.1, key="catheter_diameter_mm_input", ) if catheter_diameter_input and catheter_diameter_input > 0: catheter_diameter_mm = float(catheter_diameter_input) else: st.warning("Enter a positive catheter diameter to enable millimetre scaling.") col1, col2 = st.columns((15,15)) with col1: col1a, col1b, col1c = st.columns((1,10,1)) with col1b: leftImageText = "

Beginning with the desired start point and finishing at the desired end point, click along the artery aiming for ~5-10 points. Segmentation is automatic.

" st.markdown(f"
Selected frame
", unsafe_allow_html=True) st.markdown(leftImageText, unsafe_allow_html=True) original_frame = pixelArray[slice_ix, :, :] original_height, original_width = original_frame.shape selectedFrame = cv2.resize(original_frame, (512,512)) if selectedFrame.dtype != numpy.uint8: selectedFrameDisplay = numpy.clip(selectedFrame, 0, 255).astype(numpy.uint8) else: selectedFrameDisplay = selectedFrame.copy() canvas_background = selectedFrameDisplay legend_html = "" if uploaded_annotation_polygons: scale_y = 512.0 / original_height scale_x = 512.0 / original_width if canvas_background.ndim == 2: canvas_background_color = numpy.stack([canvas_background] * 3, axis=-1) else: canvas_background_color = canvas_background.copy() category_palette_rgb = [ (228, 26, 28), (55, 126, 184), (77, 175, 74), (152, 78, 163), (255, 127, 0), (166, 86, 40), (247, 129, 191), (153, 153, 153), (102, 194, 165), (141, 160, 203), ] category_colours = {} for polygon_entry in uploaded_annotation_polygons: polygon = polygon_entry.get("points") if polygon is None or polygon.size < 4: continue category_name = polygon_entry.get("category") or "annotation" if category_name not in category_colours: rgb = category_palette_rgb[len(category_colours) % len(category_palette_rgb)] category_colours[category_name] = (rgb[2], rgb[1], rgb[0]) overlay_colour = category_colours[category_name] scaled_polygon = polygon.copy() scaled_polygon[:, 0] = scaled_polygon[:, 0] * scale_x scaled_polygon[:, 1] = scaled_polygon[:, 1] * scale_y polygon_path = scaled_polygon.reshape((-1, 1, 2)).astype(numpy.int32) cv2.polylines( canvas_background_color, [polygon_path], isClosed=True, color=overlay_colour, thickness=2, ) canvas_background = canvas_background_color if category_colours: legend_items = [] for category_name, colour_bgr in category_colours.items(): colour_rgb = (colour_bgr[2], colour_bgr[1], colour_bgr[0]) legend_items.append( f" {category_name}" ) legend_html = " ".join(legend_items) if canvas_background.ndim == 3: background_np = cv2.cvtColor(canvas_background, cv2.COLOR_BGR2RGB) else: background_np = canvas_background canvas_key = f"canvas-{selected_label}" if selected_label else "canvas-default" # Create a canvas component annotationCanvas = st_canvas( fill_color="red", # Fixed fill color with some opacity stroke_width=1, stroke_color="red", background_color='black', background_image= Image.fromarray(background_np), update_streamlit=True, height=512, width=512, drawing_mode="point", point_display_radius=2, key=canvas_key, ) if legend_html: st.markdown(legend_html, unsafe_allow_html=True) # Do something interesting with the image data and paths objects = pd.DataFrame() raw_annotation_objects = [] if annotationCanvas.json_data: raw_annotation_objects = annotationCanvas.json_data.get("objects", []) if not raw_annotation_objects and uploaded_annotation_points: raw_annotation_objects = uploaded_annotation_points st.caption(f"Loaded {len(raw_annotation_objects)} annotation points from uploaded JSON.") if raw_annotation_objects: objects = pd.json_normalize(raw_annotation_objects) # need to convert obj to str because PyArrow if len(objects) != 0: for col in objects.select_dtypes(include=['object']).columns: objects[col] = objects[col].astype("str") groundTruthPoints = numpy.vstack( ( numpy.array(objects['top']), numpy.array(objects['left']+3.5) # compensate for some streamlit offset or something ) ).T mask = angioPyFunctions.arterySegmentation( pixelArray[slice_ix], groundTruthPoints, ) predictedMask = predict.CoronaryDataset.mask2image(mask) # predictedMask = predictedMask.crop((0, 0, imageSize[0], imageSize[1])) predictedMask = numpy.asarray(predictedMask) with col2: col2a, col2b, col2c = st.columns((1,10,1)) with col2b: st.markdown(f"
Predicted mask
", unsafe_allow_html=True) st.markdown(f"

If the predicted mask has errors, restart and select more points to help the segmentation model.

", unsafe_allow_html=True) stroke_color = "rgba(255, 255, 255, 255)" maskCanvas = st_canvas( fill_color=angioPyFunctions.colourTableList[selectedArtery], # Fixed fill color with some opacity stroke_width=0, stroke_color=stroke_color, background_color='black', background_image= Image.fromarray(predictedMask), update_streamlit=True, height=512, width=512, drawing_mode="freedraw", point_display_radius=3, key="maskCanvas", ) # Check that the mask array is not blank if numpy.sum(predictedMask) > 0 and len(objects)>4: # add alpha channel to predict mask in order to merge b_channel, g_channel, r_channel = cv2.split(predictedMask) a_channel = numpy.full_like(predictedMask[:,:,0], fill_value=255) predictedMaskRGBA = cv2.merge((predictedMask, a_channel)) with tab2: # combinedMask = cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2RGB) # print(combinedMask.shape) # tifffile.imwrite(f"{outputPath}/test.tif", combinedMask) # tab2Col1, tab2Col2, tab2Col3 = st.columns([1,15,1]) tab2Col1, tab2Col2 = st.columns([20,10]) with tab2Col1: st.markdown(f"

Artery profile
", unsafe_allow_html=True) # Extract thickness information from mask EDT = scipy.ndimage.distance_transform_edt(cv2.cvtColor(predictedMaskRGBA, cv2.COLOR_RGBA2GRAY)) # Skeletonise, get a list of ordered centreline points, and spline them skel = angioPyFunctions.skeletonise(predictedMaskRGBA) tck = angioPyFunctions.skelSplinerWithThickness(skel=skel, EDT=EDT) # Interogate the spline function over 1000 points splinePointsY, splinePointsX, splineThicknesses = scipy.interpolate.splev( numpy.linspace( 0.0, 1.0, 1000), tck) clippingLength = 20 vesselThicknesses = splineThicknesses[clippingLength:-clippingLength]*2 thickness_unit = "pixels" vesselThicknessesDisplay = vesselThicknesses calibration_message = None if catheter_mode and catheter_diameter_mm: catheter_diameter_pixels = numpy.median(vesselThicknesses) if catheter_diameter_pixels > 0: mm_per_pixel = catheter_diameter_mm / catheter_diameter_pixels vesselThicknessesDisplay = vesselThicknesses * mm_per_pixel thickness_unit = "mm" calibration_message = ( f"Calibrated using catheter diameter {catheter_diameter_mm:.2f} mm " f"(median profile thickness {catheter_diameter_pixels:.2f} pixels → {mm_per_pixel:.4f} mm/pixel)." ) else: st.warning("Unable to calibrate: catheter profile thickness is zero pixels.") fig = px.line( x=numpy.arange(1,len(vesselThicknessesDisplay)+1), y=vesselThicknessesDisplay, labels=dict(x="Centreline point", y=f"Thickness ({thickness_unit})"), width=800, ) # fig.update_layout(showlegend=False, xaxis={'showgrid': False, 'zeroline': True}) fig.update_traces(line_color='rgb(31, 119, 180)', textfont_color="white", line={'width':4}) fig.update_xaxes(showline=True, linewidth=2, linecolor='white', showgrid=False,gridcolor='white') fig.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='white') fig.update_layout(yaxis_range=[0,numpy.max(vesselThicknessesDisplay)*1.2]) fig.update_layout(font_color="white",title_font_color="white") fig.update_layout({'plot_bgcolor': 'rgba(0, 0, 0, 0)','paper_bgcolor': 'rgba(0, 0, 0, 0)'}) if calibration_message: st.caption(calibration_message) selected_points = plotly_events( fig, hover_event=True, click_event=True, ) if selected_points: # Persist the latest hover/click event so the highlight remains visible st.session_state["artery_profile_hover"] = selected_points[0] hover_event_data = st.session_state.get("artery_profile_hover") with tab2Col2: st.markdown(f"

Contours
", unsafe_allow_html=True) selectedFrameRGBA = cv2.cvtColor(selectedFrame, cv2.COLOR_GRAY2RGBA) contour = angioPyFunctions.maskOutliner(labelledArtery=predictedMaskRGBA[:,:,0], outlineThickness=1) selectedFrameRGBA[contour, :] = [angioPyFunctions.colourTableList[selectedArtery][2], angioPyFunctions.colourTableList[selectedArtery][1], angioPyFunctions.colourTableList[selectedArtery][0], 255] highlight_center = None highlight_radius = None if hover_event_data and "pointNumber" in hover_event_data: hover_index = hover_event_data.get("pointNumber") if isinstance(hover_index, (int, numpy.integer)) and 0 <= hover_index < len(vesselThicknesses): spline_index = clippingLength + hover_index highlight_center = ( float(splinePointsX[spline_index]), float(splinePointsY[spline_index]), ) highlight_radius = float(vesselThicknesses[hover_index] / 2.0) else: # Clear stale hover data if it no longer matches the current profile length st.session_state.pop("artery_profile_hover", None) hover_event_data = None fig2 = px.imshow(selectedFrameRGBA) fig2.update_xaxes(visible=False) fig2.update_yaxes(visible=False) fig2.update_layout(margin={"t": 0, "b": 0, "r": 0, "l": 0, "pad": 0},) #remove margins # fig2.coloraxis(visible=False) fig2.update_traces(dict( showscale=False, coloraxis=None, colorscale='gray'), selector={'type':'heatmap'}) fig2.add_trace(go.Scatter(x=splinePointsX[clippingLength:-clippingLength], y=splinePointsY[clippingLength:-clippingLength], line=dict(width=1))) if highlight_center: fig2.add_trace( go.Scatter( x=[highlight_center[0]], y=[highlight_center[1]], mode="markers", marker=dict(size=12, color="yellow", symbol="circle"), name="Selected location", showlegend=False, hoverinfo="skip", ) ) if highlight_radius and highlight_radius > 0: fig2.add_shape( type="circle", xref="x", yref="y", x0=highlight_center[0] - highlight_radius, x1=highlight_center[0] + highlight_radius, y0=highlight_center[1] - highlight_radius, y1=highlight_center[1] + highlight_radius, line=dict(color="yellow", width=2), ) st.plotly_chart(fig2, use_container_width=True)