File size: 36,492 Bytes
7819b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# Copyright      2022  Xiaomi Corp.        (authors: Fangjun Kuang)
#                2023  Nvidia              (authors: Yuekai Zhang)
#                2023  Recurrent.ai        (authors: Songtao Shi)
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script supports to load dataset from huggingface and sends it to the server
for decoding, in parallel.

Usage:
num_task=2

# For offline F5-TTS
python3 client_grpc.py \
    --server-addr localhost \
    --model-name f5_tts \
    --num-tasks $num_task \
    --huggingface-dataset yuekai/seed_tts \
    --split-name test_zh \
    --log-dir ./log_concurrent_tasks_${num_task}

# For offline Spark-TTS-0.5B
python3 client_grpc.py \
    --server-addr localhost \
    --model-name spark_tts \
    --num-tasks $num_task \
    --huggingface-dataset yuekai/seed_tts \
    --split-name wenetspeech4tts \
    --log-dir ./log_concurrent_tasks_${num_task}
"""

import argparse
import asyncio
import json
import queue
import uuid
import functools

import os
import time
import types
from pathlib import Path

import numpy as np
import soundfile as sf
import tritonclient
import tritonclient.grpc.aio as grpcclient_aio
import tritonclient.grpc as grpcclient_sync
from tritonclient.utils import np_to_triton_dtype, InferenceServerException


class UserData:
    def __init__(self):
        self._completed_requests = queue.Queue()
        self._first_chunk_time = None
        self._second_chunk_time = None
        self._start_time = None

    def record_start_time(self):
        self._start_time = time.time()

    def get_first_chunk_latency(self):
        if self._first_chunk_time and self._start_time:
            return self._first_chunk_time - self._start_time
        return None

    def get_second_chunk_latency(self):
        if self._first_chunk_time and self._second_chunk_time:
            return self._second_chunk_time - self._first_chunk_time
        return None


def callback(user_data, result, error):
    if not error:
        if user_data._first_chunk_time is None:
            user_data._first_chunk_time = time.time()
        elif user_data._second_chunk_time is None:
            user_data._second_chunk_time = time.time()

    if error:
        user_data._completed_requests.put(error)
    else:
        user_data._completed_requests.put(result)


def stream_callback(user_data_map, result, error):
    request_id = None
    if error:
        print(f"An error occurred in the stream callback: {error}")
    else:
        request_id = result.get_response().id

    if request_id:
        user_data = user_data_map.get(request_id)
        if user_data:
            callback(user_data, result, error)
        else:
            print(f"Warning: Could not find user_data for request_id {request_id}")


def write_triton_stats(stats, summary_file):
    with open(summary_file, "w") as summary_f:
        model_stats = stats["model_stats"]
        for model_state in model_stats:
            if "last_inference" not in model_state:
                continue
            summary_f.write(f"model name is {model_state['name']} \n")
            model_inference_stats = model_state["inference_stats"]
            total_queue_time_s = int(model_inference_stats["queue"]["ns"]) / 1e9
            total_infer_time_s = int(model_inference_stats["compute_infer"]["ns"]) / 1e9
            total_input_time_s = int(model_inference_stats["compute_input"]["ns"]) / 1e9
            total_output_time_s = int(model_inference_stats["compute_output"]["ns"]) / 1e9
            summary_f.write(
                f"queue time {total_queue_time_s:<5.2f} s, "
                f"compute infer time {total_infer_time_s:<5.2f} s, "
                f"compute input time {total_input_time_s:<5.2f} s, "
                f"compute output time {total_output_time_s:<5.2f} s \n"
            )
            model_batch_stats = model_state["batch_stats"]
            for batch in model_batch_stats:
                batch_size = int(batch["batch_size"])
                compute_input = batch["compute_input"]
                compute_output = batch["compute_output"]
                compute_infer = batch["compute_infer"]
                batch_count = int(compute_infer["count"])
                if batch_count == 0:
                    continue
                assert compute_infer["count"] == compute_output["count"] == compute_input["count"]
                compute_infer_time_ms = int(compute_infer["ns"]) / 1e6
                compute_input_time_ms = int(compute_input["ns"]) / 1e6
                compute_output_time_ms = int(compute_output["ns"]) / 1e6
                summary_f.write(
                    f"execuate inference with batch_size {batch_size:<2} total {batch_count:<5} times, "
                    f"total_infer_time {compute_infer_time_ms:<9.2f} ms, "
                    f"avg_infer_time {compute_infer_time_ms:<9.2f}/{batch_count:<5}="
                    f"{compute_infer_time_ms / batch_count:.2f} ms, "
                    f"avg_infer_time_per_sample {compute_infer_time_ms:<9.2f}/{batch_count:<5}/{batch_size}="
                    f"{compute_infer_time_ms / batch_count / batch_size:.2f} ms \n"
                )
                summary_f.write(
                    f"input {compute_input_time_ms:<9.2f} ms, avg {compute_input_time_ms / batch_count:.2f} ms, "
                )
                summary_f.write(
                    f"output {compute_output_time_ms:<9.2f} ms, avg {compute_output_time_ms / batch_count:.2f} ms \n"
                )


def subtract_stats(stats_after, stats_before):
    """Subtracts two Triton inference statistics objects."""
    stats_diff = json.loads(json.dumps(stats_after))

    model_stats_before_map = {
        s["name"]: {
            "version": s["version"],
            "last_inference": s.get("last_inference", 0),
            "inference_count": s.get("inference_count", 0),
            "execution_count": s.get("execution_count", 0),
            "inference_stats": s.get("inference_stats", {}),
            "batch_stats": s.get("batch_stats", []),
        }
        for s in stats_before["model_stats"]
    }

    for model_stat_after in stats_diff["model_stats"]:
        model_name = model_stat_after["name"]
        if model_name in model_stats_before_map:
            model_stat_before = model_stats_before_map[model_name]

            model_stat_after["inference_count"] = str(
                int(model_stat_after.get("inference_count", 0)) - int(model_stat_before.get("inference_count", 0))
            )
            model_stat_after["execution_count"] = str(
                int(model_stat_after.get("execution_count", 0)) - int(model_stat_before.get("execution_count", 0))
            )

            if "inference_stats" in model_stat_after and "inference_stats" in model_stat_before:
                for key in ["success", "fail", "queue", "compute_input", "compute_infer", "compute_output", "cache_hit", "cache_miss"]:
                    if key in model_stat_after["inference_stats"] and key in model_stat_before["inference_stats"]:
                        if "ns" in model_stat_after["inference_stats"][key]:
                            ns_after = int(model_stat_after["inference_stats"][key]["ns"])
                            ns_before = int(model_stat_before["inference_stats"][key]["ns"])
                            model_stat_after["inference_stats"][key]["ns"] = str(ns_after - ns_before)
                        if "count" in model_stat_after["inference_stats"][key]:
                            count_after = int(model_stat_after["inference_stats"][key]["count"])
                            count_before = int(model_stat_before["inference_stats"][key]["count"])
                            model_stat_after["inference_stats"][key]["count"] = str(count_after - count_before)

            if "batch_stats" in model_stat_after and "batch_stats" in model_stat_before:
                batch_stats_before_map = {b["batch_size"]: b for b in model_stat_before["batch_stats"]}
                for batch_stat_after in model_stat_after["batch_stats"]:
                    bs = batch_stat_after["batch_size"]
                    if bs in batch_stats_before_map:
                        batch_stat_before = batch_stats_before_map[bs]
                        for key in ["compute_input", "compute_infer", "compute_output"]:
                            if key in batch_stat_after and key in batch_stat_before:
                                count_after = int(batch_stat_after[key]["count"])
                                count_before = int(batch_stat_before[key]["count"])
                                batch_stat_after[key]["count"] = str(count_after - count_before)

                                ns_after = int(batch_stat_after[key]["ns"])
                                ns_before = int(batch_stat_before[key]["ns"])
                                batch_stat_after[key]["ns"] = str(ns_after - ns_before)
    return stats_diff


def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument(
        "--server-addr",
        type=str,
        default="localhost",
        help="Address of the server",
    )

    parser.add_argument(
        "--server-port",
        type=int,
        default=8001,
        help="Grpc port of the triton server, default is 8001",
    )

    parser.add_argument(
        "--reference-audio",
        type=str,
        default=None,
        help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
    )

    parser.add_argument(
        "--reference-text",
        type=str,
        default="",
        help="",
    )

    parser.add_argument(
        "--target-text",
        type=str,
        default="",
        help="",
    )

    parser.add_argument(
        "--huggingface-dataset",
        type=str,
        default="yuekai/seed_tts",
        help="dataset name in huggingface dataset hub",
    )

    parser.add_argument(
        "--split-name",
        type=str,
        default="wenetspeech4tts",
        choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
        help="dataset split name, default is 'test'",
    )

    parser.add_argument(
        "--manifest-path",
        type=str,
        default=None,
        help="Path to the manifest dir which includes wav.scp trans.txt files.",
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="f5_tts",
        choices=[
            "f5_tts",
            "spark_tts",
            "cosyvoice2",
            "cosyvoice2_dit"],
        help="triton model_repo module name to request",
    )

    parser.add_argument(
        "--num-tasks",
        type=int,
        default=1,
        help="Number of concurrent tasks for sending",
    )

    parser.add_argument(
        "--log-interval",
        type=int,
        default=5,
        help="Controls how frequently we print the log.",
    )

    parser.add_argument(
        "--compute-wer",
        action="store_true",
        default=False,
        help="""True to compute WER.
        """,
    )

    parser.add_argument(
        "--log-dir",
        type=str,
        required=False,
        default="./tmp",
        help="log directory",
    )

    parser.add_argument(
        "--mode",
        type=str,
        default="offline",
        choices=["offline", "streaming"],
        help="Select offline or streaming benchmark mode."
    )
    parser.add_argument(
        "--chunk-overlap-duration",
        type=float,
        default=0.1,
        help="Chunk overlap duration for streaming reconstruction (in seconds)."
    )

    parser.add_argument(
        "--use-spk2info-cache",
        type=str,
        default="False",
        help="Use spk2info cache for reference audio.",
    )

    return parser.parse_args()


def load_audio(wav_path, target_sample_rate=16000):
    assert target_sample_rate == 16000, "hard coding in server"
    if isinstance(wav_path, dict):
        waveform = wav_path["array"]
        sample_rate = wav_path["sampling_rate"]
    else:
        waveform, sample_rate = sf.read(wav_path)
    if sample_rate != target_sample_rate:
        from scipy.signal import resample

        num_samples = int(len(waveform) * (target_sample_rate / sample_rate))
        waveform = resample(waveform, num_samples)
    return waveform, target_sample_rate


def prepare_request_input_output(
    protocol_client,
    waveform,
    reference_text,
    target_text,
    sample_rate=16000,
    padding_duration: int = None,
    use_spk2info_cache: bool = False
):
    """Prepares inputs for Triton inference (offline or streaming)."""
    assert len(waveform.shape) == 1, "waveform should be 1D"
    lengths = np.array([[len(waveform)]], dtype=np.int32)

    if padding_duration:
        duration = len(waveform) / sample_rate
        if reference_text:
            estimated_target_duration = duration / len(reference_text) * len(target_text)
        else:
            estimated_target_duration = duration

        required_total_samples = padding_duration * sample_rate * (
            (int(estimated_target_duration + duration) // padding_duration) + 1
        )
        samples = np.zeros((1, required_total_samples), dtype=np.float32)
        samples[0, : len(waveform)] = waveform
    else:
        samples = waveform.reshape(1, -1).astype(np.float32)

    inputs = [
        protocol_client.InferInput("reference_wav", samples.shape, np_to_triton_dtype(samples.dtype)),
        protocol_client.InferInput(
            "reference_wav_len", lengths.shape, np_to_triton_dtype(lengths.dtype)
        ),
        protocol_client.InferInput("reference_text", [1, 1], "BYTES"),
        protocol_client.InferInput("target_text", [1, 1], "BYTES"),
    ]
    inputs[0].set_data_from_numpy(samples)
    inputs[1].set_data_from_numpy(lengths)

    input_data_numpy = np.array([reference_text], dtype=object)
    input_data_numpy = input_data_numpy.reshape((1, 1))
    inputs[2].set_data_from_numpy(input_data_numpy)

    input_data_numpy = np.array([target_text], dtype=object)
    input_data_numpy = input_data_numpy.reshape((1, 1))
    inputs[3].set_data_from_numpy(input_data_numpy)

    outputs = [protocol_client.InferRequestedOutput("waveform")]
    if use_spk2info_cache:
        inputs = inputs[-1:]
    return inputs, outputs


def run_sync_streaming_inference(
    sync_triton_client: tritonclient.grpc.InferenceServerClient,
    model_name: str,
    inputs: list,
    outputs: list,
    request_id: str,
    user_data: UserData,
    chunk_overlap_duration: float,
    save_sample_rate: int,
    audio_save_path: str,
):
    """Helper function to run the blocking sync streaming call."""
    start_time_total = time.time()
    user_data.record_start_time()

    sync_triton_client.async_stream_infer(
        model_name,
        inputs,
        request_id=request_id,
        outputs=outputs,
        enable_empty_final_response=True,
    )

    audios = []
    while True:
        try:
            result = user_data._completed_requests.get(timeout=200)
            if isinstance(result, InferenceServerException):
                print(f"Received InferenceServerException: {result}")
                return None, None, None, None
            response = result.get_response()
            final = response.parameters["triton_final_response"].bool_param
            if final is True:
                break

            audio_chunk = result.as_numpy("waveform").reshape(-1)
            if audio_chunk.size > 0:
                audios.append(audio_chunk)
            else:
                print("Warning: received empty audio chunk.")

        except queue.Empty:
            print(f"Timeout waiting for response for request id {request_id}")
            return None, None, None, None

    end_time_total = time.time()
    total_request_latency = end_time_total - start_time_total
    first_chunk_latency = user_data.get_first_chunk_latency()
    second_chunk_latency = user_data.get_second_chunk_latency()

    if audios:
        if model_name == "spark_tts":
            cross_fade_samples = int(chunk_overlap_duration * save_sample_rate)
            fade_out = np.linspace(1, 0, cross_fade_samples)
            fade_in = np.linspace(0, 1, cross_fade_samples)
            reconstructed_audio = None

            if not audios:
                print("Warning: No audio chunks received.")
                reconstructed_audio = np.array([], dtype=np.float32)
            elif len(audios) == 1:
                reconstructed_audio = audios[0]
            else:
                reconstructed_audio = audios[0][:-cross_fade_samples]
                for i in range(1, len(audios)):
                    cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in +
                                           audios[i - 1][-cross_fade_samples:] * fade_out)
                    middle_part = audios[i][cross_fade_samples:-cross_fade_samples]
                    reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part])
                reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]])

            if reconstructed_audio is not None and reconstructed_audio.size > 0:
                actual_duration = len(reconstructed_audio) / save_sample_rate
                sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16")
            else:
                print("Warning: No audio chunks received or reconstructed.")
                actual_duration = 0
        else:
            reconstructed_audio = np.concatenate(audios)
            actual_duration = len(reconstructed_audio) / save_sample_rate
            sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16")

    else:
        print("Warning: No audio chunks received.")
        actual_duration = 0

    return total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration


async def send_streaming(
    manifest_item_list: list,
    name: str,
    server_url: str,
    protocol_client: types.ModuleType,
    log_interval: int,
    model_name: str,
    audio_save_dir: str = "./",
    save_sample_rate: int = 16000,
    chunk_overlap_duration: float = 0.1,
    padding_duration: int = None,
    use_spk2info_cache: bool = False,
):
    total_duration = 0.0
    latency_data = []
    task_id = int(name[5:])
    sync_triton_client = None
    user_data_map = {}

    try:
        print(f"{name}: Initializing sync client for streaming...")
        sync_triton_client = grpcclient_sync.InferenceServerClient(url=server_url, verbose=False)
        sync_triton_client.start_stream(callback=functools.partial(stream_callback, user_data_map))

        print(f"{name}: Starting streaming processing for {len(manifest_item_list)} items.")
        for i, item in enumerate(manifest_item_list):
            if i % log_interval == 0:
                print(f"{name}: Processing item {i}/{len(manifest_item_list)}")

            try:
                waveform, sample_rate = load_audio(item["audio_filepath"], target_sample_rate=16000)
                reference_text, target_text = item["reference_text"], item["target_text"]

                inputs, outputs = prepare_request_input_output(
                    protocol_client,
                    waveform,
                    reference_text,
                    target_text,
                    sample_rate,
                    padding_duration=padding_duration,
                    use_spk2info_cache=use_spk2info_cache
                )

                request_id = str(uuid.uuid4())
                user_data = UserData()
                user_data_map[request_id] = user_data

                audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
                total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration = await asyncio.to_thread(
                    run_sync_streaming_inference,
                    sync_triton_client,
                    model_name,
                    inputs,
                    outputs,
                    request_id,
                    user_data,
                    chunk_overlap_duration,
                    save_sample_rate,
                    audio_save_path
                )

                if total_request_latency is not None:
                    print(
                        f"{name}: Item {i} - First Chunk Latency: {first_chunk_latency:.4f}s, "
                        f"Second Chunk Latency: {second_chunk_latency if second_chunk_latency is not None else 'N/A'}, "
                        f"Total Latency: {total_request_latency:.4f}s, Duration: {actual_duration:.4f}s"
                    )
                    latency_data.append((total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration))
                    total_duration += actual_duration
                else:
                    print(f"{name}: Item {i} failed.")

                del user_data_map[request_id]

            except FileNotFoundError:
                print(f"Error: Audio file not found for item {i}: {item['audio_filepath']}")
            except Exception as e:
                print(f"Error processing item {i} ({item['target_audio_path']}): {e}")
                import traceback
                traceback.print_exc()

    finally:
        if sync_triton_client:
            try:
                print(f"{name}: Closing stream and sync client...")
                sync_triton_client.stop_stream()
                sync_triton_client.close()
            except Exception as e:
                print(f"{name}: Error closing sync client: {e}")

    print(f"{name}: Finished streaming processing. Total duration synthesized: {total_duration:.4f}s")
    return total_duration, latency_data


async def send(
    manifest_item_list: list,
    name: str,
    triton_client: tritonclient.grpc.aio.InferenceServerClient,
    protocol_client: types.ModuleType,
    log_interval: int,
    model_name: str,
    padding_duration: int = None,
    audio_save_dir: str = "./",
    save_sample_rate: int = 16000,
    use_spk2info_cache: bool = False,
):
    total_duration = 0.0
    latency_data = []
    task_id = int(name[5:])

    for i, item in enumerate(manifest_item_list):
        if i % log_interval == 0:
            print(f"{name}: {i}/{len(manifest_item_list)}")
        waveform, sample_rate = load_audio(item["audio_filepath"], target_sample_rate=16000)
        reference_text, target_text = item["reference_text"], item["target_text"]

        inputs, outputs = prepare_request_input_output(
            protocol_client,
            waveform,
            reference_text,
            target_text,
            sample_rate,
            padding_duration=padding_duration,
            use_spk2info_cache=use_spk2info_cache
        )
        sequence_id = 100000000 + i + task_id * 10
        start = time.time()
        response = await triton_client.infer(model_name, inputs, request_id=str(sequence_id), outputs=outputs)

        audio = response.as_numpy("waveform").reshape(-1)
        actual_duration = len(audio) / save_sample_rate

        end = time.time() - start

        audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
        sf.write(audio_save_path, audio, save_sample_rate, "PCM_16")

        latency_data.append((end, actual_duration))
        total_duration += actual_duration

    return total_duration, latency_data


def load_manifests(manifest_path):
    with open(manifest_path, "r") as f:
        manifest_list = []
        for line in f:
            assert len(line.strip().split("|")) == 4
            utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
            utt = Path(utt).stem
            if not os.path.isabs(prompt_wav):
                prompt_wav = os.path.join(os.path.dirname(manifest_path), prompt_wav)
            manifest_list.append(
                {
                    "audio_filepath": prompt_wav,
                    "reference_text": prompt_text,
                    "target_text": gt_text,
                    "target_audio_path": utt,
                }
            )
    return manifest_list


def split_data(data, k):
    n = len(data)
    if n < k:
        print(f"Warning: the length of the input list ({n}) is less than k ({k}). Setting k to {n}.")
        k = n

    quotient = n // k
    remainder = n % k

    result = []
    start = 0
    for i in range(k):
        if i < remainder:
            end = start + quotient + 1
        else:
            end = start + quotient

        result.append(data[start:end])
        start = end

    return result


async def main():
    args = get_args()
    url = f"{args.server_addr}:{args.server_port}"

    triton_client = None
    protocol_client = None
    if args.mode == "offline":
        print("Initializing gRPC client for offline mode...")
        triton_client = grpcclient_aio.InferenceServerClient(url=url, verbose=False)
        protocol_client = grpcclient_aio
    elif args.mode == "streaming":
        print("Initializing gRPC client for streaming mode...")
        protocol_client = grpcclient_sync
    else:
        raise ValueError(f"Invalid mode: {args.mode}")

    if args.reference_audio:
        args.num_tasks = 1
        args.log_interval = 1
        manifest_item_list = [
            {
                "reference_text": args.reference_text,
                "target_text": args.target_text,
                "audio_filepath": args.reference_audio,
                "target_audio_path": "test",
            }
        ]
    elif args.huggingface_dataset:
        import datasets

        dataset = datasets.load_dataset(
            args.huggingface_dataset,
            split=args.split_name,
            trust_remote_code=True,
        )
        manifest_item_list = []
        for i in range(len(dataset)):
            manifest_item_list.append(
                {
                    "audio_filepath": dataset[i]["prompt_audio"],
                    "reference_text": dataset[i]["prompt_text"],
                    "target_audio_path": dataset[i]["id"],
                    "target_text": dataset[i]["target_text"],
                }
            )
    else:
        manifest_item_list = load_manifests(args.manifest_path)

    stats_client = None
    stats_before = None
    try:
        print("Initializing temporary async client for fetching stats...")
        stats_client = grpcclient_aio.InferenceServerClient(url=url, verbose=False)
        print("Fetching inference statistics before running tasks...")
        stats_before = await stats_client.get_inference_statistics(model_name="", as_json=True)
    except Exception as e:
        print(f"Could not retrieve statistics before running tasks: {e}")

    num_tasks = min(args.num_tasks, len(manifest_item_list))
    manifest_item_list = split_data(manifest_item_list, num_tasks)

    os.makedirs(args.log_dir, exist_ok=True)
    args.use_spk2info_cache = args.use_spk2info_cache == "True" or args.use_spk2info_cache == "true"
    tasks = []
    start_time = time.time()
    for i in range(num_tasks):
        if args.mode == "offline":
            task = asyncio.create_task(
                send(
                    manifest_item_list[i],
                    name=f"task-{i}",
                    triton_client=triton_client,
                    protocol_client=protocol_client,
                    log_interval=args.log_interval,
                    model_name=args.model_name,
                    audio_save_dir=args.log_dir,
                    padding_duration=1,
                    save_sample_rate=16000 if args.model_name == "spark_tts" else 24000,
                    use_spk2info_cache=args.use_spk2info_cache,
                )
            )
        elif args.mode == "streaming":
            task = asyncio.create_task(
                send_streaming(
                    manifest_item_list[i],
                    name=f"task-{i}",
                    server_url=url,
                    protocol_client=protocol_client,
                    log_interval=args.log_interval,
                    model_name=args.model_name,
                    audio_save_dir=args.log_dir,
                    padding_duration=10,
                    save_sample_rate=16000 if args.model_name == "spark_tts" else 24000,
                    chunk_overlap_duration=args.chunk_overlap_duration,
                    use_spk2info_cache=args.use_spk2info_cache,
                )
            )
        tasks.append(task)

    ans_list = await asyncio.gather(*tasks)

    end_time = time.time()
    elapsed = end_time - start_time

    total_duration = 0.0
    latency_data = []
    for ans in ans_list:
        if ans:
            total_duration += ans[0]
            latency_data.extend(ans[1])
        else:
            print("Warning: A task returned None, possibly due to an error.")

    if total_duration == 0:
        print("Total synthesized duration is zero. Cannot calculate RTF or latency percentiles.")
        rtf = float('inf')
    else:
        rtf = elapsed / total_duration

    s = f"Mode: {args.mode}\n"
    s += f"RTF: {rtf:.4f}\n"
    s += f"total_duration: {total_duration:.3f} seconds\n"
    s += f"({total_duration / 3600:.2f} hours)\n"
    s += f"processing time: {elapsed:.3f} seconds ({elapsed / 3600:.2f} hours)\n"

    if latency_data:
        if args.mode == "offline":
            latency_list = [chunk_end for (chunk_end, chunk_duration) in latency_data]
            if latency_list:
                latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
                latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
                s += f"latency_variance: {latency_variance:.2f}\n"
                s += f"latency_50_percentile_ms: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
                s += f"latency_90_percentile_ms: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
                s += f"latency_95_percentile_ms: {np.percentile(latency_list, 95) * 1000.0:.2f}\n"
                s += f"latency_99_percentile_ms: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
                s += f"average_latency_ms: {latency_ms:.2f}\n"
            else:
                s += "No latency data collected for offline mode.\n"

        elif args.mode == "streaming":
            total_latency_list = [total for (total, first, second, duration) in latency_data if total is not None]
            first_chunk_latency_list = [first for (total, first, second, duration) in latency_data if first is not None]
            second_chunk_latency_list = [second for (total, first, second, duration) in latency_data if second is not None]

            s += "\n--- Total Request Latency ---\n"
            if total_latency_list:
                avg_total_latency_ms = sum(total_latency_list) / len(total_latency_list) * 1000.0
                variance_total_latency = np.var(total_latency_list, dtype=np.float64) * 1000.0
                s += f"total_request_latency_variance: {variance_total_latency:.2f}\n"
                s += f"total_request_latency_50_percentile_ms: {np.percentile(total_latency_list, 50) * 1000.0:.2f}\n"
                s += f"total_request_latency_90_percentile_ms: {np.percentile(total_latency_list, 90) * 1000.0:.2f}\n"
                s += f"total_request_latency_95_percentile_ms: {np.percentile(total_latency_list, 95) * 1000.0:.2f}\n"
                s += f"total_request_latency_99_percentile_ms: {np.percentile(total_latency_list, 99) * 1000.0:.2f}\n"
                s += f"average_total_request_latency_ms: {avg_total_latency_ms:.2f}\n"
            else:
                s += "No total request latency data collected.\n"

            s += "\n--- First Chunk Latency ---\n"
            if first_chunk_latency_list:
                avg_first_chunk_latency_ms = sum(first_chunk_latency_list) / len(first_chunk_latency_list) * 1000.0
                variance_first_chunk_latency = np.var(first_chunk_latency_list, dtype=np.float64) * 1000.0
                s += f"first_chunk_latency_variance: {variance_first_chunk_latency:.2f}\n"
                s += f"first_chunk_latency_50_percentile_ms: {np.percentile(first_chunk_latency_list, 50) * 1000.0:.2f}\n"
                s += f"first_chunk_latency_90_percentile_ms: {np.percentile(first_chunk_latency_list, 90) * 1000.0:.2f}\n"
                s += f"first_chunk_latency_95_percentile_ms: {np.percentile(first_chunk_latency_list, 95) * 1000.0:.2f}\n"
                s += f"first_chunk_latency_99_percentile_ms: {np.percentile(first_chunk_latency_list, 99) * 1000.0:.2f}\n"
                s += f"average_first_chunk_latency_ms: {avg_first_chunk_latency_ms:.2f}\n"
            else:
                s += "No first chunk latency data collected (check for errors or if all requests failed before first chunk).\n"

            s += "\n--- Second Chunk Latency ---\n"
            if second_chunk_latency_list:
                avg_second_chunk_latency_ms = sum(second_chunk_latency_list) / len(second_chunk_latency_list) * 1000.0
                variance_second_chunk_latency = np.var(second_chunk_latency_list, dtype=np.float64) * 1000.0
                s += f"second_chunk_latency_variance: {variance_second_chunk_latency:.2f}\n"
                s += f"second_chunk_latency_50_percentile_ms: {np.percentile(second_chunk_latency_list, 50) * 1000.0:.2f}\n"
                s += f"second_chunk_latency_90_percentile_ms: {np.percentile(second_chunk_latency_list, 90) * 1000.0:.2f}\n"
                s += f"second_chunk_latency_95_percentile_ms: {np.percentile(second_chunk_latency_list, 95) * 1000.0:.2f}\n"
                s += f"second_chunk_latency_99_percentile_ms: {np.percentile(second_chunk_latency_list, 99) * 1000.0:.2f}\n"
                s += f"average_second_chunk_latency_ms: {avg_second_chunk_latency_ms:.2f}\n"
            else:
                s += "No second chunk latency data collected (check for errors or if all requests failed before second chunk).\n"
    else:
        s += "No latency data collected.\n"

    print(s)
    if args.manifest_path:
        name = Path(args.manifest_path).stem
    elif args.split_name:
        name = args.split_name
    elif args.reference_audio:
        name = Path(args.reference_audio).stem
    else:
        name = "results"
    with open(f"{args.log_dir}/rtf-{name}.txt", "w") as f:
        f.write(s)

    try:
        if stats_client and stats_before:
            print("Fetching inference statistics after running tasks...")
            stats_after = await stats_client.get_inference_statistics(model_name="", as_json=True)

            print("Calculating statistics difference...")
            stats = subtract_stats(stats_after, stats_before)

            print("Fetching model config...")
            metadata = await stats_client.get_model_config(model_name=args.model_name, as_json=True)

            write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")

            with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
                json.dump(metadata, f, indent=4)
        else:
            print("Stats client not available or initial stats were not fetched. Skipping stats reporting.")

    except Exception as e:
        print(f"Could not retrieve statistics or config: {e}")
    finally:
        if stats_client:
            try:
                print("Closing temporary async stats client...")
                await stats_client.close()
            except Exception as e:
                print(f"Error closing async stats client: {e}")


if __name__ == "__main__":
    async def run_main():
        try:
            await main()
        except Exception as e:
            print(f"An error occurred in main: {e}")
            import traceback
            traceback.print_exc()

    asyncio.run(run_main())