Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,183 Bytes
7819b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage
CUDA_VISIBLE_DEVICES=0 \
python3 token2wav.py --enable-trt || exit 1
"""
import torch
from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
from flashcosyvoice.modules.hifigan import HiFTGenerator
from flashcosyvoice.utils.audio import mel_spectrogram
import torchaudio.compliance.kaldi as kaldi
import onnxruntime
import s3tokenizer
from torch.utils.data import DataLoader
from datasets import load_dataset
import torchaudio
import os
import logging
import argparse
import queue
import time
def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
import tensorrt as trt
logging.info("Converting onnx to trt...")
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
logger = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(logger)
network = builder.create_network(network_flags)
parser = trt.OnnxParser(network, logger)
config = builder.create_builder_config()
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
if fp16:
config.set_flag(trt.BuilderFlag.FP16)
profile = builder.create_optimization_profile()
# load onnx model
with open(onnx_model, "rb") as f:
if not parser.parse(f.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
raise ValueError('failed to parse {}'.format(onnx_model))
# set input shapes
for i in range(len(trt_kwargs['input_names'])):
profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
# set input and output data type
for i in range(network.num_inputs):
input_tensor = network.get_input(i)
input_tensor.dtype = tensor_dtype
for i in range(network.num_outputs):
output_tensor = network.get_output(i)
output_tensor.dtype = tensor_dtype
config.add_optimization_profile(profile)
engine_bytes = builder.build_serialized_network(network, config)
# save trt engine
with open(trt_model, "wb") as f:
f.write(engine_bytes)
logging.info("Succesfully convert onnx to trt...")
class TrtContextWrapper:
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
self.trt_engine = trt_engine
self.device = device
for _ in range(trt_concurrent):
trt_context = trt_engine.create_execution_context()
trt_stream = torch.cuda.stream(torch.cuda.Stream(torch.device(device)))
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
self.trt_context_pool.put([trt_context, trt_stream])
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
def acquire_estimator(self):
return self.trt_context_pool.get(), self.trt_engine
def release_estimator(self, context, stream):
self.trt_context_pool.put([context, stream])
class CosyVoice2_Token2Wav(torch.nn.Module):
def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
super().__init__()
self.device_id = device_id
self.device = f"cuda:{device_id}"
self.flow = CausalMaskedDiffWithXvec()
self.flow.half()
self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
self.flow.to(self.device).eval()
self.hift = HiFTGenerator()
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{model_dir}/hift.pt", map_location="cpu", weights_only=True).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])
self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()
gpu = "l20"
if enable_trt:
self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
1,
True)
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
f'{model_dir}/campplus.onnx',
1,
False)
def forward_spk_embedding(self, spk_feat):
if isinstance(self.spk_model, onnxruntime.InferenceSession):
return self.spk_model.run(
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
)[0].flatten().tolist()
else:
[spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
# NOTE need to synchronize when switching stream
with torch.cuda.device(self.device_id):
torch.cuda.current_stream().synchronize()
spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
batch_size = spk_feat.size(0)
with stream:
spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
output_tensor = torch.empty((batch_size, 192), device=spk_feat.device)
data_ptrs = [spk_feat.contiguous().data_ptr(),
output_tensor.contiguous().data_ptr()]
for i, j in enumerate(data_ptrs):
spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
# run trt engine
assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
torch.cuda.current_stream().synchronize()
self.spk_model.release_estimator(spk_model, stream)
return output_tensor.cpu().numpy().flatten().tolist()
def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
trt_kwargs = self.get_spk_trt_kwargs()
convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
import tensorrt as trt
with open(spk_model, 'rb') as f:
spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_spk_trt_kwargs(self):
min_shape = [(1, 4, 80)]
opt_shape = [(1, 500, 80)]
max_shape = [(1, 3000, 80)]
input_names = ["input"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
(max_batch_size * 2, 80)]
input_names = ["x", "mask", "mu", "cond", "t", "spks"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
def prompt_audio_tokenization(self, prompt_audios_list: list[torch.Tensor]) -> list[list[int]]:
prompt_speech_tokens_list, prompt_speech_mels_list = [], []
for audio in prompt_audios_list:
assert len(audio.shape) == 1
log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
prompt_speech_mels_list.append(log_mel)
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_speech_mels_list)
prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
prompt_mels_for_llm.to(self.device), prompt_mels_lens_for_llm.to(self.device)
)
for i in range(len(prompt_speech_tokens)):
speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
prompt_speech_tokens_list.append(speech_tokens_i)
return prompt_speech_tokens_list
def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
spk_emb_for_flow = []
for audio in prompt_audios_list:
assert len(audio.shape) == 1
spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
spk_emb = self.forward_spk_embedding(spk_feat)
spk_emb_for_flow.append(spk_emb)
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
return spk_emb_for_flow
def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
prompt_mels_for_flow = []
prompt_mels_lens_for_flow = []
for audio, sample_rate in zip(prompt_audios_list, prompt_audios_sample_rate):
assert len(audio.shape) == 1
audio = audio.unsqueeze(0)
if sample_rate != 24000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
mel_len = mel.shape[0]
prompt_mels_for_flow.append(mel)
prompt_mels_lens_for_flow.append(mel_len)
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
return prompt_mels_for_flow, prompt_mels_lens_for_flow
def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
batch_size = prompt_mels_for_flow.shape[0]
flow_inputs = []
flow_inputs_lens = []
for prompt_speech_tokens, generated_speech_tokens in zip(prompt_speech_tokens_list, generated_speech_tokens_list):
flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))
flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
flow_inputs_lens = torch.tensor(flow_inputs_lens)
with torch.amp.autocast(self.device, dtype=torch.float16):
generated_mels, generated_mels_lens = self.flow(
flow_inputs.to(self.device), flow_inputs_lens.to(self.device),
prompt_mels_for_flow.to(self.device), prompt_mels_lens_for_flow.to(self.device), spk_emb_for_flow.to(self.device),
streaming=False, finalize=True
)
return generated_mels, generated_mels_lens
def forward_hift(self, generated_mels: torch.Tensor, generated_mels_lens: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor):
batch_size = generated_mels.shape[0]
generated_wavs = []
for i in range(batch_size):
mel = generated_mels[i, :, prompt_mels_lens_for_flow[i].item():generated_mels_lens[i].item()].unsqueeze(0)
wav, _ = self.hift(speech_feat=mel)
generated_wavs.append(wav)
return generated_wavs
@torch.inference_mode()
def forward(
self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
):
# assert all item in prompt_audios_sample_rate is 16000
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
prompt_mels_for_flow, prompt_mels_lens_for_flow = self.get_prompt_mels(prompt_audios_list, prompt_audios_sample_rate)
spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
generated_mels, generated_mels_lens = self.forward_flow(
prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
return generated_wavs
def collate_fn(batch):
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
for _, item in enumerate(batch):
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
audio = torch.from_numpy(item['prompt_audio']['array']).float()
prompt_audios_list.append(audio)
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
ids.append(item['id'])
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--enable-trt", action="store_true")
parser.add_argument("--model-dir", type=str, default="./CosyVoice2-0.5B")
parser.add_argument("--batch-size", type=int, default=4)
parser.add_argument("--output-dir", type=str, default="generated_wavs")
parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
# mkdir output_dir if not exists
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
dataset_name = "yuekai/seed_tts_cosy2"
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
for _ in range(args.warmup):
start_time = time.time()
for batch in data_loader:
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
for id, wav in zip(ids, generated_wavs):
torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
end_time = time.time()
epoch_time = end_time - start_time
print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")
|