File size: 17,183 Bytes
7819b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage
    CUDA_VISIBLE_DEVICES=0 \
        python3 token2wav.py --enable-trt || exit 1
"""
import torch
from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
from flashcosyvoice.modules.hifigan import HiFTGenerator
from flashcosyvoice.utils.audio import mel_spectrogram
import torchaudio.compliance.kaldi as kaldi
import onnxruntime
import s3tokenizer
from torch.utils.data import DataLoader
from datasets import load_dataset
import torchaudio
import os
import logging
import argparse
import queue
import time


def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
    import tensorrt as trt
    logging.info("Converting onnx to trt...")
    network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    logger = trt.Logger(trt.Logger.INFO)
    builder = trt.Builder(logger)
    network = builder.create_network(network_flags)
    parser = trt.OnnxParser(network, logger)
    config = builder.create_builder_config()
    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32)  # 4GB
    if fp16:
        config.set_flag(trt.BuilderFlag.FP16)
    profile = builder.create_optimization_profile()
    # load onnx model
    with open(onnx_model, "rb") as f:
        if not parser.parse(f.read()):
            for error in range(parser.num_errors):
                print(parser.get_error(error))
            raise ValueError('failed to parse {}'.format(onnx_model))
    # set input shapes
    for i in range(len(trt_kwargs['input_names'])):
        profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
    tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
    # set input and output data type
    for i in range(network.num_inputs):
        input_tensor = network.get_input(i)
        input_tensor.dtype = tensor_dtype
    for i in range(network.num_outputs):
        output_tensor = network.get_output(i)
        output_tensor.dtype = tensor_dtype
    config.add_optimization_profile(profile)
    engine_bytes = builder.build_serialized_network(network, config)
    # save trt engine
    with open(trt_model, "wb") as f:
        f.write(engine_bytes)
    logging.info("Succesfully convert onnx to trt...")


class TrtContextWrapper:
    def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
        self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
        self.trt_engine = trt_engine
        self.device = device
        for _ in range(trt_concurrent):
            trt_context = trt_engine.create_execution_context()
            trt_stream = torch.cuda.stream(torch.cuda.Stream(torch.device(device)))
            assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
            self.trt_context_pool.put([trt_context, trt_stream])
        assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'

    def acquire_estimator(self):
        return self.trt_context_pool.get(), self.trt_engine

    def release_estimator(self, context, stream):
        self.trt_context_pool.put([context, stream])


class CosyVoice2_Token2Wav(torch.nn.Module):
    def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
        super().__init__()
        self.device_id = device_id
        self.device = f"cuda:{device_id}"

        self.flow = CausalMaskedDiffWithXvec()
        self.flow.half()
        self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
        self.flow.to(self.device).eval()

        self.hift = HiFTGenerator()
        hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{model_dir}/hift.pt", map_location="cpu", weights_only=True).items()}
        self.hift.load_state_dict(hift_state_dict, strict=True)
        self.hift.to(self.device).eval()

        option = onnxruntime.SessionOptions()
        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        option.intra_op_num_threads = 1
        self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])

        self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()

        gpu = "l20"
        if enable_trt:
            self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
                          f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
                          1,
                          True)
            self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
                              f'{model_dir}/campplus.onnx',
                              1,
                              False)

    def forward_spk_embedding(self, spk_feat):
        if isinstance(self.spk_model, onnxruntime.InferenceSession):
            return self.spk_model.run(
                None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
            )[0].flatten().tolist()
        else:
            [spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
            # NOTE need to synchronize when switching stream
            with torch.cuda.device(self.device_id):
                torch.cuda.current_stream().synchronize()
                spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
                batch_size = spk_feat.size(0)

                with stream:
                    spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
                    output_tensor = torch.empty((batch_size, 192), device=spk_feat.device)

                    data_ptrs = [spk_feat.contiguous().data_ptr(),
                                 output_tensor.contiguous().data_ptr()]
                    for i, j in enumerate(data_ptrs):

                        spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
                    # run trt engine
                    assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
                    torch.cuda.current_stream().synchronize()
                self.spk_model.release_estimator(spk_model, stream)

            return output_tensor.cpu().numpy().flatten().tolist()

    def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
        if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
            trt_kwargs = self.get_spk_trt_kwargs()
            convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
        import tensorrt as trt
        with open(spk_model, 'rb') as f:
            spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
        assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
        self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)

    def get_spk_trt_kwargs(self):
        min_shape = [(1, 4, 80)]
        opt_shape = [(1, 500, 80)]
        max_shape = [(1, 3000, 80)]
        input_names = ["input"]
        return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}

    def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
        assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
        if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
            trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
            convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
        del self.flow.decoder.estimator
        import tensorrt as trt
        with open(flow_decoder_estimator_model, 'rb') as f:
            estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
        assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
        self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)

    def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
        min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
        opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
        max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
                     (max_batch_size * 2, 80)]
        input_names = ["x", "mask", "mu", "cond", "t", "spks"]
        return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}

    def prompt_audio_tokenization(self, prompt_audios_list: list[torch.Tensor]) -> list[list[int]]:
        prompt_speech_tokens_list, prompt_speech_mels_list = [], []
        for audio in prompt_audios_list:
            assert len(audio.shape) == 1
            log_mel = s3tokenizer.log_mel_spectrogram(audio)  # [num_mels, T]
            prompt_speech_mels_list.append(log_mel)
        prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_speech_mels_list)
        prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
            prompt_mels_for_llm.to(self.device), prompt_mels_lens_for_llm.to(self.device)
        )
        for i in range(len(prompt_speech_tokens)):
            speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
            prompt_speech_tokens_list.append(speech_tokens_i)
        return prompt_speech_tokens_list

    def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
        spk_emb_for_flow = []
        for audio in prompt_audios_list:
            assert len(audio.shape) == 1
            spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
            spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
            spk_emb = self.forward_spk_embedding(spk_feat)

            spk_emb_for_flow.append(spk_emb)
        spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
        return spk_emb_for_flow

    def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
        prompt_mels_for_flow = []
        prompt_mels_lens_for_flow = []
        for audio, sample_rate in zip(prompt_audios_list, prompt_audios_sample_rate):
            assert len(audio.shape) == 1
            audio = audio.unsqueeze(0)
            if sample_rate != 24000:
                audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
            mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0)  # [T, num_mels]
            mel_len = mel.shape[0]
            prompt_mels_for_flow.append(mel)
            prompt_mels_lens_for_flow.append(mel_len)
        prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0)  # [B, T', num_mels=80]
        prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
        return prompt_mels_for_flow, prompt_mels_lens_for_flow

    def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
                     prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
        batch_size = prompt_mels_for_flow.shape[0]
        flow_inputs = []
        flow_inputs_lens = []
        for prompt_speech_tokens, generated_speech_tokens in zip(prompt_speech_tokens_list, generated_speech_tokens_list):
            flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
            flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))

        flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
        flow_inputs_lens = torch.tensor(flow_inputs_lens)

        with torch.amp.autocast(self.device, dtype=torch.float16):
            generated_mels, generated_mels_lens = self.flow(
                flow_inputs.to(self.device), flow_inputs_lens.to(self.device),
                prompt_mels_for_flow.to(self.device), prompt_mels_lens_for_flow.to(self.device), spk_emb_for_flow.to(self.device),
                streaming=False, finalize=True
            )

        return generated_mels, generated_mels_lens

    def forward_hift(self, generated_mels: torch.Tensor, generated_mels_lens: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor):
        batch_size = generated_mels.shape[0]
        generated_wavs = []
        for i in range(batch_size):
            mel = generated_mels[i, :, prompt_mels_lens_for_flow[i].item():generated_mels_lens[i].item()].unsqueeze(0)
            wav, _ = self.hift(speech_feat=mel)
            generated_wavs.append(wav)
        return generated_wavs

    @torch.inference_mode()
    def forward(
        self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
    ):
        # assert all item in prompt_audios_sample_rate is 16000
        assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)

        prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)

        prompt_mels_for_flow, prompt_mels_lens_for_flow = self.get_prompt_mels(prompt_audios_list, prompt_audios_sample_rate)

        spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)

        generated_mels, generated_mels_lens = self.forward_flow(
            prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)

        generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)

        return generated_wavs


def collate_fn(batch):
    ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
    for _, item in enumerate(batch):
        generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
        audio = torch.from_numpy(item['prompt_audio']['array']).float()
        prompt_audios_list.append(audio)
        prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
        ids.append(item['id'])

    return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--enable-trt", action="store_true")
    parser.add_argument("--model-dir", type=str, default="./CosyVoice2-0.5B")
    parser.add_argument("--batch-size", type=int, default=4)
    parser.add_argument("--output-dir", type=str, default="generated_wavs")
    parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
    parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()
    model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
    # mkdir output_dir if not exists
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    dataset_name = "yuekai/seed_tts_cosy2"

    dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)

    data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)

    for _ in range(args.warmup):
        start_time = time.time()

        for batch in data_loader:
            ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch

            generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)

            for id, wav in zip(ids, generated_wavs):
                torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)

        end_time = time.time()
        epoch_time = end_time - start_time
        print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")