tzzte's picture
Upload 223 files
7819b34 verified
raw
history blame
7.47 kB
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Reward calculation for CosyVoice2-0.5B.
"""
from __future__ import annotations
import re
import json
import time
import argparse
from typing import List
import numpy as np
import requests
REWARD_SERVER_URL = "http://localhost:8000/v2/models/token2wav_asr/infer"
def _parse_ids(token_str: str) -> List[int]:
return [int(t) for t in re.findall(r"<\|s_(\d+)\|>", token_str)]
def _remote_reward(tokens: List[int], ground_truth: str, timeout: float = 200.0) -> float:
"""Send token IDs and ground-truth text to the Triton server and get reward."""
tokens_arr = np.array(tokens, dtype=np.int32).reshape(1, -1)
lens_arr = np.array([[tokens_arr.shape[1]]], dtype=np.int32)
gt_arr = np.array([ground_truth.encode("utf-8")], dtype=object)
payload = {
"inputs": [
{
"name": "TOKENS",
"shape": list(tokens_arr.shape),
"datatype": "INT32",
"data": tokens_arr.tolist(),
},
{
"name": "TOKEN_LENS",
"shape": list(lens_arr.shape),
"datatype": "INT32",
"data": lens_arr.tolist(),
},
{
"name": "GT_TEXT",
"shape": [1, 1],
"datatype": "BYTES",
"data": [ground_truth],
},
]
}
rsp = requests.post(
REWARD_SERVER_URL,
headers={"Content-Type": "application/json"},
json=payload,
timeout=timeout,
verify=False,
params={"request_id": "0"},
)
rsp.raise_for_status()
result = rsp.json()
try:
# Reward is returned as the first output
return float(result["outputs"][0]["data"][0])
except (KeyError, IndexError, TypeError):
return 0.0
def compute_score(
data_source: str,
solution_str: str,
ground_truth: str,
extra_info: dict | None = None,
*,
debug_dump: bool = False,
) -> float:
"""Return reward in [0, 1] using the Triton ASR service.
The reward is based on the pinyin-level WER between the ASR transcript
produced from *solution_str* and the provided *ground_truth* text.
"""
# Decode token IDs
ids = _parse_ids(solution_str)
# Query remote server for reward
try:
reward = _remote_reward(ids, ground_truth)
except Exception as e:
reward = 0.0
if debug_dump:
print(
f"\033[92m[{data_source}] Remote reward: {reward:.4f}\033[0m"
)
return reward
# CLI quick test
if __name__ == "__main__":
import sys
def get_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Test TTS CER scoring with data from JSONL file",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--input", "-i",
type=str,
default="data/emilia_zh-cosy-tiny-test.jsonl",
help="Path to input JSONL file"
)
parser.add_argument(
"--max-samples", "-n",
type=int,
default=None,
help="Maximum number of samples to process (default: all)"
)
parser.add_argument(
"--no-interactive",
action="store_true",
help="Run in non-interactive mode (process all samples without prompts)"
)
parser.add_argument(
"--debug",
action="store_true",
help="Enable debug mode"
)
return parser.parse_args()
def load_jsonl(file_path: str):
"""Load data from jsonl file."""
data = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
data.append(json.loads(line.strip()))
return data
def code_to_solution_str(code_list: List[int]) -> str:
"""Convert code list to solution string format."""
return ''.join([f"<|s_{code}|>" for code in code_list])
# Parse command line arguments
args = get_args()
try:
# Load data from jsonl file
print(f"Loading data from: {args.input}")
data_list = load_jsonl(args.input)
print(f"Loaded {len(data_list)} samples")
# Limit samples if specified
if args.max_samples is not None:
data_list = data_list[:args.max_samples]
print(f"Processing first {len(data_list)} samples (limited by --max-samples)")
# Process each sample
begin_time = time.time()
for i, sample in enumerate(data_list):
print(f"\n--- Sample {i+1}/{len(data_list)} ---")
print(f"Index: {sample.get('index', 'unknown')}")
print(f"Text: {sample['text']}")
# Extract required fields
code_list = sample['code']
ground_truth = sample['text']
data_source = sample.get('index', f'sample_{i}') # Use index as data_source
# Convert code list to solution string
solution_str = code_to_solution_str(code_list)
print(f"Solution tokens: {len(code_list)} tokens")
if args.debug:
print(f"Solution string: {solution_str}")
else:
print(f"Solution string preview: {solution_str[:100]}..." if len(solution_str) > 100 else f"Solution string: {solution_str}")
# Call compute_score function
try:
score = compute_score(
data_source=data_source,
solution_str=solution_str,
ground_truth=ground_truth,
extra_info=None,
debug_dump=args.debug
)
print(f"Final Score: {score:.4f}")
except Exception as e:
print(f"Error computing score: {e}")
# Ask user if they want to continue (for interactive mode)
if not args.no_interactive and i < len(data_list) - 1:
try:
response = input("\nPress Enter to continue or 'q' to quit: ").strip().lower()
if response == 'q':
break
except KeyboardInterrupt:
print("\nStopped by user")
break
print(f"\nProcessed {min(i+1, len(data_list))} samples")
end_time = time.time()
print(f"Time taken: {end_time - begin_time} seconds")
except FileNotFoundError:
print(f"Error: File not found - {args.input}")
print("Please check the file path or use --input to specify correct path")
print("Run with --help for usage information")
except Exception as e:
print(f"Error: {e}")