EchoX / CosyVoice /runtime /triton_trtllm /streaming_inference.py
tzzte's picture
Upload 223 files
7819b34 verified
raw
history blame
5.25 kB
import torch
import os
import argparse
from datasets import load_dataset
from torch.utils.data import DataLoader
import numpy as np
import torchaudio
import time
from token2wav_dit import CosyVoice2_Token2Wav
import soundfile as sf
def collate_fn(batch):
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
prompt_speech_tokens_list, prompt_text_list = [], []
for item in batch:
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
audio = torch.from_numpy(item['prompt_audio']['array']).float()
prompt_audios_list.append(audio)
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
ids.append(item['id'])
prompt_speech_tokens_list.append(item['prompt_audio_cosy2_tokens'])
prompt_text_list.append(item['prompt_text'])
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--enable-trt", action="store_true")
parser.add_argument("--model-dir", type=str, default="./Step-Audio-2-mini/token2wav")
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--output-dir", type=str, default="generated_wavs")
parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
parser.add_argument("--dataset-name", type=str, default="yuekai/seed_tts_cosy2")
parser.add_argument("--strategy", type=str, default="equal", choices=["equal", "exponential"])
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
dataset_name = args.dataset_name
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
token2wav_model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt, streaming=True)
CHUNK_SIZE = 25
token_frame_rate = 25
OVERLAP_SIZE = 0
warmup_times = 3
for _ in range(warmup_times):
start_time = time.time()
total_forward_count = 0
for batch in data_loader:
tts_speech_list = []
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list = batch
id, generated_speech_tokens, prompt_audio, prompt_audio_sample_rate = ids[0], generated_speech_tokens_list[0], prompt_audios_list[0], prompt_audios_sample_rate[0]
assert prompt_audio_sample_rate == 16000
prompt_text = prompt_text_list[0]
prompt_speech_tokens = prompt_speech_tokens_list[0]
semantic_token_ids_arr, token_offset = [], 0
flow_prompt_speech_token_len = len(prompt_speech_tokens)
buffer = generated_speech_tokens
output_wavs = []
chunk_index = 0
while True:
if args.strategy == "equal":
this_chunk_size = CHUNK_SIZE
elif args.strategy == "exponential":
this_chunk_size = token_frame_rate * (2 ** chunk_index)
if len(buffer) >= this_chunk_size + token2wav_model.flow.pre_lookahead_len:
wavs = token2wav_model.forward_streaming(
buffer[:this_chunk_size + token2wav_model.flow.pre_lookahead_len],
False, request_id=id, speaker_id=f"{id}", prompt_audio=prompt_audio,
prompt_audio_sample_rate=prompt_audio_sample_rate
)
buffer = buffer[this_chunk_size - OVERLAP_SIZE:]
output_wavs.append(wavs)
total_forward_count += 1
chunk_index += 1
else:
wavs = token2wav_model.forward_streaming(
buffer, True, request_id=id, speaker_id=f"{id}",
prompt_audio=prompt_audio, prompt_audio_sample_rate=prompt_audio_sample_rate
)
output_wavs.append(wavs)
total_forward_count += 1
# chunk_index += 1
break
for i, wav in enumerate(output_wavs):
output_wavs[i] = wav.cpu().numpy().squeeze()
audios = output_wavs
reconstructed_audio = np.concatenate(audios)
sf.write(os.path.join(args.output_dir, f"{id}.wav"), reconstructed_audio, 24000, "PCM_16")
end_time = time.time()
if _ == 0:
token2wav_model.speaker_cache = {}
print(f"Warmup time: {end_time - start_time} seconds")
print("clear speaker cache")
elif _ == 1:
print(f"Cost time without speaker cache: {end_time - start_time} seconds")
else:
print(f"Cost time with speaker cache: {end_time - start_time} seconds")
print(f"Total flow matching forward calls: {total_forward_count}")