Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import re | |
| from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer | |
| def load_qa_model(): | |
| model_name = "mrm8488/mobilebert-uncased-finetuned-squadv2" | |
| model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| qa = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
| return qa | |
| def preprocess_text(text): | |
| # Remove special characters and punctuation | |
| text = re.sub(r'[^a-zA-Z0-9\s]', '', text) | |
| # Convert to lowercase | |
| text = text.lower() | |
| return text | |
| def format_answer(answer): | |
| # Add answer formatting logic here | |
| # For example, add bold formatting | |
| return f"**{answer}**" | |
| def get_answers(qa, question, text, max, min, do_sample): | |
| try: | |
| answers = qa(question=question, context=text, max_answer_len=max, min_answer_len=min, do_sample=do_sample) | |
| return format_answer(answers['answer']) | |
| except Exception as e: | |
| st.error(f"Error: {str(e)}") | |
| qa = load_qa_model() | |
| st.title("Ask Questions about your Text") | |
| sentence = st.text_area('Please paste your article :', height=30) | |
| question = st.text_input("Questions from this article?") | |
| button = st.button("Get me Answers") | |
| with st.sidebar: | |
| max = st.slider('Select max answer length', 50, 500, step=10, value=150) | |
| min = st.slider('Select min answer length', 10, 450, step=10, value=50) | |
| do_sample = st.checkbox("Do sample", value=False) | |
| if button and sentence and question: | |
| with st.spinner("Discovering Answers.."): | |
| text = preprocess_text(sentence) | |
| answer = get_answers(qa, question, text, max, min, do_sample) | |
| st.write(answer) | |
| else: | |
| st.error("Please enter a question and text!") |