Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,20 @@
|
|
| 1 |
-
# app.py — Enhanced UI
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# =========================
|
| 5 |
# ENHANCED CSS
|
|
@@ -44,10 +59,7 @@ h1, h2, h3, .gr-markdown {
|
|
| 44 |
background: var(--accent) !important;
|
| 45 |
border: 1px solid var(--accent) !important;
|
| 46 |
}
|
| 47 |
-
|
| 48 |
-
.btn-primary:hover {
|
| 49 |
-
background: var(--accent-hover) !important;
|
| 50 |
-
}
|
| 51 |
|
| 52 |
.btn-secondary {
|
| 53 |
background: transparent !important;
|
|
@@ -92,9 +104,7 @@ h1, h2, h3, .gr-markdown {
|
|
| 92 |
color: var(--accent);
|
| 93 |
}
|
| 94 |
|
| 95 |
-
.param-slider {
|
| 96 |
-
margin-bottom: 12px;
|
| 97 |
-
}
|
| 98 |
|
| 99 |
.visualization-container {
|
| 100 |
display: flex;
|
|
@@ -103,10 +113,7 @@ h1, h2, h3, .gr-markdown {
|
|
| 103 |
height: 100%;
|
| 104 |
}
|
| 105 |
|
| 106 |
-
.viz-panel {
|
| 107 |
-
flex: 1;
|
| 108 |
-
min-height: 300px;
|
| 109 |
-
}
|
| 110 |
|
| 111 |
.viz-header {
|
| 112 |
display: flex;
|
|
@@ -143,17 +150,9 @@ h1, h2, h3, .gr-markdown {
|
|
| 143 |
grid-template-columns: 1fr 1fr;
|
| 144 |
gap: 16px;
|
| 145 |
}
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
.controls-grid {
|
| 149 |
-
grid-template-columns: 1fr;
|
| 150 |
-
}
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
.data-table {
|
| 154 |
-
max-height: 400px;
|
| 155 |
-
overflow-y: auto;
|
| 156 |
-
}
|
| 157 |
|
| 158 |
.data-table table {
|
| 159 |
width: 100%;
|
|
@@ -176,15 +175,9 @@ h1, h2, h3, .gr-markdown {
|
|
| 176 |
border-bottom: 1px solid rgba(31, 43, 54, 0.5);
|
| 177 |
}
|
| 178 |
|
| 179 |
-
.data-table tr:hover {
|
| 180 |
-
background: rgba(31, 43, 54, 0.3);
|
| 181 |
-
}
|
| 182 |
|
| 183 |
-
.action-buttons {
|
| 184 |
-
display: flex;
|
| 185 |
-
gap: 12px;
|
| 186 |
-
margin-top: 20px;
|
| 187 |
-
}
|
| 188 |
|
| 189 |
.footer {
|
| 190 |
margin-top: 20px;
|
|
@@ -196,7 +189,403 @@ h1, h2, h3, .gr-markdown {
|
|
| 196 |
}
|
| 197 |
"""
|
| 198 |
|
| 199 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
# =========================
|
| 202 |
# BUILD ENHANCED UI
|
|
@@ -204,17 +593,16 @@ h1, h2, h3, .gr-markdown {
|
|
| 204 |
with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
|
| 205 |
# Header
|
| 206 |
with gr.Column(elem_id="header"):
|
| 207 |
-
gr.Markdown("## 🧬 Neuroevolution Playground"
|
| 208 |
-
gr.Markdown("Evolve neural architectures using genetic algorithms"
|
| 209 |
-
|
| 210 |
-
|
| 211 |
with gr.Row():
|
| 212 |
# Left Panel - Controls
|
| 213 |
with gr.Column(scale=1):
|
| 214 |
# Parameters Group
|
| 215 |
with gr.Group(elem_classes=["control-group"]):
|
| 216 |
gr.Markdown("### 🛠 Evolution Parameters")
|
| 217 |
-
|
| 218 |
with gr.Column():
|
| 219 |
dataset = gr.Dropdown(
|
| 220 |
label="Evaluation Dataset",
|
|
@@ -222,45 +610,38 @@ with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
|
|
| 222 |
value="Demo (Surrogate)",
|
| 223 |
info="Dataset used for fitness evaluation"
|
| 224 |
)
|
| 225 |
-
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
-
pop = gr.Slider(8, 80, value=24, step=2, label="Population Size",
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
elem_classes=["param-slider"])
|
| 232 |
-
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation Rate",
|
| 233 |
-
elem_classes=["param-slider"])
|
| 234 |
with gr.Column():
|
| 235 |
-
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration",
|
| 236 |
-
|
| 237 |
-
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation",
|
| 238 |
-
elem_classes=["param-slider"])
|
| 239 |
seed = gr.Number(value=42, label="Random Seed", precision=0)
|
| 240 |
-
|
| 241 |
-
pace = gr.Slider(0, 1000, value=120, step=10, label="Simulation Speed (ms)",
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
label="History Metric Display")
|
| 245 |
-
|
| 246 |
# Status Panel
|
| 247 |
with gr.Group(elem_classes=["panel", "stats-panel"]):
|
| 248 |
gr.Markdown("### 📊 Current Status")
|
| 249 |
stats_md = gr.Markdown("Ready. Press **Start** to begin evolution.", elem_id="stats")
|
| 250 |
-
|
| 251 |
# Action Buttons
|
| 252 |
with gr.Row(elem_classes=["action-buttons"]):
|
| 253 |
start = gr.Button("▶ Start Evolution", variant="primary", elem_classes=["btn-primary"])
|
| 254 |
-
stop = gr.Button("⏹ Stop", variant="
|
| 255 |
clear = gr.Button("↻ Reset", elem_classes=["btn-secondary"])
|
| 256 |
-
|
| 257 |
# Export
|
| 258 |
with gr.Group(elem_classes=["panel"]):
|
| 259 |
gr.Markdown("### 💾 Export Results")
|
| 260 |
with gr.Row():
|
| 261 |
export_btn = gr.Button("Save Snapshot (JSON)")
|
| 262 |
export_file = gr.File(label="Download snapshot", visible=False)
|
| 263 |
-
|
| 264 |
# Right Panel - Visualizations
|
| 265 |
with gr.Column(scale=2):
|
| 266 |
# 3D Visualization
|
|
@@ -270,46 +651,40 @@ with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
|
|
| 270 |
gr.Markdown("### 🌐 Architecture Space", elem_classes=["viz-title"])
|
| 271 |
gen_counter = gr.Markdown("", elem_classes=["gen-counter"])
|
| 272 |
sphere_html = gr.HTML()
|
| 273 |
-
|
| 274 |
# History Visualization
|
| 275 |
with gr.Group(elem_classes=["panel", "viz-panel"]):
|
| 276 |
with gr.Column(elem_classes=["viz-header"]):
|
| 277 |
gr.Markdown("### 📈 Performance History", elem_classes=["viz-title"])
|
| 278 |
hist_html = gr.HTML()
|
| 279 |
-
|
| 280 |
# Results Table
|
| 281 |
with gr.Group(elem_classes=["panel"]):
|
| 282 |
gr.Markdown("### 🏆 Top Genomes")
|
| 283 |
with gr.Column(elem_classes=["data-table"]):
|
| 284 |
-
top_df = gr.Dataframe(
|
| 285 |
-
|
| 286 |
-
headers=["Fitness", "Accuracy", "d_model", "Layers", "Heads", "FFN", "Mem", "Dropout", "Params"],
|
| 287 |
-
datatype=["number", "number", "number", "number", "number", "number", "number", "number", "number"],
|
| 288 |
-
wrap=True,
|
| 289 |
-
interactive=False
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
# Footer
|
| 293 |
with gr.Column(elem_classes=["footer"]):
|
| 294 |
-
gr.Markdown("
|
| 295 |
-
|
| 296 |
# Wiring
|
| 297 |
start.click(
|
| 298 |
-
start_evo,
|
| 299 |
-
[dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice],
|
| 300 |
[start, stop, clear]
|
| 301 |
)
|
| 302 |
stop.click(stop_evo, [], [start, stop, clear])
|
| 303 |
clear.click(
|
| 304 |
-
clear_evo,
|
| 305 |
-
[],
|
| 306 |
-
[sphere_html, hist_html, stats_md, top_df, start, stop, clear]
|
| 307 |
)
|
| 308 |
export_btn.click(export_snapshot, [], [export_file])
|
| 309 |
-
|
| 310 |
# State polling
|
| 311 |
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
|
| 312 |
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
|
| 313 |
|
| 314 |
if __name__ == "__main__":
|
| 315 |
-
demo.launch()
|
|
|
|
| 1 |
+
# app.py — Enhanced UI + stable backend (idle sphere, Clear, inline Plotly, accuracy)
|
| 2 |
+
import math, random, time, threading
|
| 3 |
+
from dataclasses import dataclass, asdict
|
| 4 |
+
from typing import List, Tuple, Dict, Any, Optional
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import plotly.graph_objs as go
|
| 9 |
+
import plotly.io as pio
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import torch.optim as optim
|
| 16 |
+
|
| 17 |
+
from data_utils import load_piqa, load_hellaswag, hash_vectorize
|
| 18 |
|
| 19 |
# =========================
|
| 20 |
# ENHANCED CSS
|
|
|
|
| 59 |
background: var(--accent) !important;
|
| 60 |
border: 1px solid var(--accent) !important;
|
| 61 |
}
|
| 62 |
+
.btn-primary:hover { background: var(--accent-hover) !important; }
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
.btn-secondary {
|
| 65 |
background: transparent !important;
|
|
|
|
| 104 |
color: var(--accent);
|
| 105 |
}
|
| 106 |
|
| 107 |
+
.param-slider { margin-bottom: 12px; }
|
|
|
|
|
|
|
| 108 |
|
| 109 |
.visualization-container {
|
| 110 |
display: flex;
|
|
|
|
| 113 |
height: 100%;
|
| 114 |
}
|
| 115 |
|
| 116 |
+
.viz-panel { flex: 1; min-height: 300px; }
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
.viz-header {
|
| 119 |
display: flex;
|
|
|
|
| 150 |
grid-template-columns: 1fr 1fr;
|
| 151 |
gap: 16px;
|
| 152 |
}
|
| 153 |
+
@media (max-width: 1200px) { .controls-grid { grid-template-columns: 1fr; } }
|
| 154 |
|
| 155 |
+
.data-table { max-height: 400px; overflow-y: auto; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
.data-table table {
|
| 158 |
width: 100%;
|
|
|
|
| 175 |
border-bottom: 1px solid rgba(31, 43, 54, 0.5);
|
| 176 |
}
|
| 177 |
|
| 178 |
+
.data-table tr:hover { background: rgba(31, 43, 54, 0.3); }
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
.action-buttons { display: flex; gap: 12px; margin-top: 20px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
.footer {
|
| 183 |
margin-top: 20px;
|
|
|
|
| 189 |
}
|
| 190 |
"""
|
| 191 |
|
| 192 |
+
# =========================
|
| 193 |
+
# GENOME + EVOLUTION CORE
|
| 194 |
+
# =========================
|
| 195 |
+
@dataclass
|
| 196 |
+
class Genome:
|
| 197 |
+
d_model: int
|
| 198 |
+
n_layers: int
|
| 199 |
+
n_heads: int
|
| 200 |
+
ffn_mult: float
|
| 201 |
+
memory_tokens: int
|
| 202 |
+
dropout: float
|
| 203 |
+
species: int = 0
|
| 204 |
+
fitness: float = float("inf")
|
| 205 |
+
acc: Optional[float] = None
|
| 206 |
+
|
| 207 |
+
def vector(self) -> np.ndarray:
|
| 208 |
+
return np.array([
|
| 209 |
+
self.d_model / 1024.0,
|
| 210 |
+
self.n_layers / 24.0,
|
| 211 |
+
self.n_heads / 32.0,
|
| 212 |
+
self.ffn_mult / 8.0,
|
| 213 |
+
self.memory_tokens / 64.0,
|
| 214 |
+
self.dropout / 0.5
|
| 215 |
+
], dtype=np.float32)
|
| 216 |
+
|
| 217 |
+
def random_genome(rng: random.Random) -> Genome:
|
| 218 |
+
return Genome(
|
| 219 |
+
d_model=rng.choice([256, 384, 512, 640]),
|
| 220 |
+
n_layers=rng.choice([4, 6, 8, 10, 12]),
|
| 221 |
+
n_heads=rng.choice([4, 6, 8, 10, 12]),
|
| 222 |
+
ffn_mult=rng.choice([2.0, 3.0, 4.0, 6.0]),
|
| 223 |
+
memory_tokens=rng.choice([0, 4, 8, 16]),
|
| 224 |
+
dropout=rng.choice([0.0, 0.05, 0.1, 0.15]),
|
| 225 |
+
species=rng.randrange(5)
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
def mutate(g: Genome, rng: random.Random, rate: float) -> Genome:
|
| 229 |
+
g = Genome(**asdict(g))
|
| 230 |
+
if rng.random() < rate: g.d_model = rng.choice([256, 384, 512, 640])
|
| 231 |
+
if rng.random() < rate: g.n_layers = rng.choice([4, 6, 8, 10, 12])
|
| 232 |
+
if rng.random() < rate: g.n_heads = rng.choice([4, 6, 8, 10, 12])
|
| 233 |
+
if rng.random() < rate: g.ffn_mult = rng.choice([2.0, 3.0, 4.0, 6.0])
|
| 234 |
+
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
|
| 235 |
+
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
|
| 236 |
+
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
|
| 237 |
+
g.fitness = float("inf"); g.acc = None
|
| 238 |
+
return g
|
| 239 |
+
|
| 240 |
+
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
|
| 241 |
+
return Genome(
|
| 242 |
+
d_model = a.d_model if rng.random()<0.5 else b.d_model,
|
| 243 |
+
n_layers = a.n_layers if rng.random()<0.5 else b.n_layers,
|
| 244 |
+
n_heads = a.n_heads if rng.random()<0.5 else b.n_heads,
|
| 245 |
+
ffn_mult = a.ffn_mult if rng.random()<0.5 else b.ffn_mult,
|
| 246 |
+
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
|
| 247 |
+
dropout = a.dropout if rng.random()<0.5 else b.dropout,
|
| 248 |
+
species = a.species if rng.random()<0.5 else b.species,
|
| 249 |
+
fitness = float("inf"), acc=None
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# =========================
|
| 253 |
+
# PROXY FITNESS
|
| 254 |
+
# =========================
|
| 255 |
+
def rastrigin(x: np.ndarray) -> float:
|
| 256 |
+
A, n = 10.0, x.shape[0]
|
| 257 |
+
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
|
| 258 |
+
|
| 259 |
+
class TinyMLP(nn.Module):
|
| 260 |
+
def __init__(self, in_dim: int, genome: Genome):
|
| 261 |
+
super().__init__()
|
| 262 |
+
h1 = max(64, int(0.25 * genome.d_model))
|
| 263 |
+
h2 = max(32, int(genome.ffn_mult * 32))
|
| 264 |
+
self.net = nn.Sequential(
|
| 265 |
+
nn.Linear(in_dim, h1), nn.ReLU(),
|
| 266 |
+
nn.Linear(h1, h2), nn.ReLU(),
|
| 267 |
+
nn.Linear(h2, 1)
|
| 268 |
+
)
|
| 269 |
+
def forward(self, x): return self.net(x).squeeze(-1)
|
| 270 |
+
|
| 271 |
+
@lru_cache(maxsize=4)
|
| 272 |
+
def _cached_dataset(name: str):
|
| 273 |
+
try:
|
| 274 |
+
if name.startswith("PIQA"): return load_piqa(subset=800, seed=42)
|
| 275 |
+
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
|
| 276 |
+
except Exception:
|
| 277 |
+
return None
|
| 278 |
+
return None
|
| 279 |
+
|
| 280 |
+
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str="cpu"):
|
| 281 |
+
data = _cached_dataset(dataset_name)
|
| 282 |
+
if data is None:
|
| 283 |
+
# Fallback to surrogate so UI still runs
|
| 284 |
+
v = genome.vector() * 2 - 1
|
| 285 |
+
base = rastrigin(v)
|
| 286 |
+
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
|
| 287 |
+
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
|
| 288 |
+
return float(base + parsimony + noise), None
|
| 289 |
+
|
| 290 |
+
Xtr_txt, ytr, Xva_txt, yva = data
|
| 291 |
+
nfeat = 4096
|
| 292 |
+
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
|
| 293 |
+
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678)
|
| 294 |
+
|
| 295 |
+
Xtr_t = torch.from_numpy(Xtr); ytr_t = torch.from_numpy(ytr.astype(np.float32))
|
| 296 |
+
Xva_t = torch.from_numpy(Xva); yva_t = torch.from_numpy(yva.astype(np.float32))
|
| 297 |
+
|
| 298 |
+
model = TinyMLP(nfeat, genome).to(device)
|
| 299 |
+
opt = optim.AdamW(model.parameters(), lr=2e-3)
|
| 300 |
+
lossf = nn.BCEWithLogitsLoss()
|
| 301 |
+
|
| 302 |
+
model.train(); steps, bs, N = 120, 256, Xtr_t.size(0)
|
| 303 |
+
for _ in range(steps):
|
| 304 |
+
idx = torch.randint(0, N, (bs,))
|
| 305 |
+
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
|
| 306 |
+
logits = model(xb); loss = lossf(logits, yb)
|
| 307 |
+
opt.zero_grad(); loss.backward()
|
| 308 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 309 |
+
opt.step()
|
| 310 |
+
|
| 311 |
+
model.eval()
|
| 312 |
+
with torch.no_grad():
|
| 313 |
+
logits = model(Xva_t.to(device))
|
| 314 |
+
probs = torch.sigmoid(logits).cpu().numpy()
|
| 315 |
+
|
| 316 |
+
if dataset_name.startswith("PIQA"):
|
| 317 |
+
probs = probs.reshape(-1,2); yva2 = yva.reshape(-1,2)
|
| 318 |
+
pred = (probs[:,0] > probs[:,1]).astype(np.int64)
|
| 319 |
+
truth = (yva2[:,0] == 1).astype(np.int64)
|
| 320 |
+
acc = float((pred == truth).mean())
|
| 321 |
+
else:
|
| 322 |
+
probs = probs.reshape(-1,4); yva2 = yva.reshape(-1,4)
|
| 323 |
+
pred = probs.argmax(axis=1); truth = yva2.argmax(axis=1)
|
| 324 |
+
acc = float((pred == truth).mean())
|
| 325 |
+
|
| 326 |
+
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens
|
| 327 |
+
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore)))
|
| 328 |
+
fitness = (1.0 - acc) + parsimony + noise
|
| 329 |
+
return float(max(0.0, min(1.5, fitness))), float(acc)
|
| 330 |
+
|
| 331 |
+
def evaluate_genome(genome: Genome, dataset: str, explore: float):
|
| 332 |
+
if dataset == "Demo (Surrogate)":
|
| 333 |
+
v = genome.vector() * 2 - 1
|
| 334 |
+
base = rastrigin(v)
|
| 335 |
+
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
|
| 336 |
+
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
|
| 337 |
+
return float(base + parsimony + noise), None
|
| 338 |
+
if dataset.startswith("PIQA"): return _train_eval_proxy(genome, "PIQA", explore)
|
| 339 |
+
if dataset.startswith("HellaSwag"): return _train_eval_proxy(genome, "HellaSwag", explore)
|
| 340 |
+
v = genome.vector() * 2 - 1
|
| 341 |
+
return float(rastrigin(v)), None
|
| 342 |
+
|
| 343 |
+
# =========================
|
| 344 |
+
# VIZ — idle sphere, big transparent surface
|
| 345 |
+
# =========================
|
| 346 |
+
BG = "#0F1A24"
|
| 347 |
+
DOT = "#93C5FD"
|
| 348 |
+
SPHERE = "#cbd5e1"
|
| 349 |
+
|
| 350 |
+
def sphere_project(points: np.ndarray) -> np.ndarray:
|
| 351 |
+
rng = np.random.RandomState(42)
|
| 352 |
+
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
|
| 353 |
+
Y = points @ W
|
| 354 |
+
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
|
| 355 |
+
return (Y / norms) * 1.22
|
| 356 |
+
|
| 357 |
+
def make_idle_sphere() -> go.Figure:
|
| 358 |
+
u = np.linspace(0, 2*np.pi, 72)
|
| 359 |
+
v = np.linspace(0, np.pi, 36)
|
| 360 |
+
r = 1.22
|
| 361 |
+
xs = r*np.outer(np.cos(u), np.sin(v))
|
| 362 |
+
ys = r*np.outer(np.sin(u), np.sin(v))
|
| 363 |
+
zs = r*np.outer(np.ones_like(u), np.cos(v))
|
| 364 |
+
sphere = go.Surface(
|
| 365 |
+
x=xs, y=ys, z=zs,
|
| 366 |
+
opacity=0.06, showscale=False,
|
| 367 |
+
colorscale=[[0, SPHERE],[1, SPHERE]],
|
| 368 |
+
hoverinfo="skip"
|
| 369 |
+
)
|
| 370 |
+
layout = go.Layout(
|
| 371 |
+
paper_bgcolor=BG, plot_bgcolor=BG,
|
| 372 |
+
title=dict(text="Architecture Space (idle)", font=dict(color="#E5E7EB")),
|
| 373 |
+
scene=dict(
|
| 374 |
+
xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False),
|
| 375 |
+
bgcolor=BG
|
| 376 |
+
),
|
| 377 |
+
margin=dict(l=0, r=0, t=36, b=0), showlegend=False, height=720,
|
| 378 |
+
font=dict(family="Inter, Arial, sans-serif", size=14, color="#E5E7EB")
|
| 379 |
+
)
|
| 380 |
+
return go.Figure(data=[sphere], layout=layout)
|
| 381 |
+
|
| 382 |
+
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
|
| 383 |
+
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
|
| 384 |
+
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
|
| 385 |
+
for g in genomes], dtype=np.float32)
|
| 386 |
+
scatter = go.Scatter3d(
|
| 387 |
+
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
|
| 388 |
+
mode='markers',
|
| 389 |
+
marker=dict(size=7.0, color=DOT, opacity=0.92),
|
| 390 |
+
customdata=custom,
|
| 391 |
+
hovertemplate=(
|
| 392 |
+
"<b>Genome</b><br>"
|
| 393 |
+
"d_model=%{customdata[0]:.0f} · layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}<br>"
|
| 394 |
+
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}<br>"
|
| 395 |
+
"fitness=%{customdata[7]:.4f} · acc=%{customdata[8]:.3f}<extra></extra>"
|
| 396 |
+
)
|
| 397 |
+
)
|
| 398 |
+
idle = make_idle_sphere()
|
| 399 |
+
fig = go.Figure(data=idle.data + (scatter,), layout=idle.layout)
|
| 400 |
+
fig.update_layout(title=dict(text=f"Evo Architecture Space — Gen {gen_idx}"))
|
| 401 |
+
return fig
|
| 402 |
+
|
| 403 |
+
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
|
| 404 |
+
xs = [h[0] for h in history]
|
| 405 |
+
if metric == "Accuracy":
|
| 406 |
+
ys = [h[2] if (h[2] == h[2]) else None for h in history]
|
| 407 |
+
title, ylab = "Best Accuracy per Generation", "Accuracy"
|
| 408 |
+
else:
|
| 409 |
+
ys = [h[1] for h in history]
|
| 410 |
+
title, ylab = "Best Fitness per Generation", "Fitness (↓ better)"
|
| 411 |
+
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers", line=dict(width=2), marker=dict(color=DOT))])
|
| 412 |
+
fig.update_layout(
|
| 413 |
+
paper_bgcolor=BG, plot_bgcolor=BG, font=dict(color="#E5E7EB"),
|
| 414 |
+
title=dict(text=title), xaxis_title="Generation", yaxis_title=ylab,
|
| 415 |
+
margin=dict(l=30, r=10, t=36, b=30), height=340
|
| 416 |
+
)
|
| 417 |
+
fig.update_xaxes(gridcolor="#1f2b36"); fig.update_yaxes(gridcolor="#1f2b36")
|
| 418 |
+
return fig
|
| 419 |
+
|
| 420 |
+
def fig_to_html(fig: go.Figure) -> str:
|
| 421 |
+
# Inline Plotly JS so it renders even without CDN
|
| 422 |
+
return pio.to_html(fig, include_plotlyjs=True, full_html=False, config=dict(displaylogo=False))
|
| 423 |
+
|
| 424 |
+
def approx_params(g: Genome) -> int:
|
| 425 |
+
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
|
| 426 |
+
total = per_layer * g.n_layers + 1000 * g.memory_tokens
|
| 427 |
+
return int(total)
|
| 428 |
+
|
| 429 |
+
# =========================
|
| 430 |
+
# RUNNER
|
| 431 |
+
# =========================
|
| 432 |
+
class EvoRunner:
|
| 433 |
+
def __init__(self):
|
| 434 |
+
self.lock = threading.Lock()
|
| 435 |
+
self.running = False
|
| 436 |
+
self.stop_flag = False
|
| 437 |
+
self.state: Dict[str, Any] = {}
|
| 438 |
+
# Seed idle visuals
|
| 439 |
+
idle = fig_to_html(make_idle_sphere())
|
| 440 |
+
self.state = {
|
| 441 |
+
"sphere_html": idle,
|
| 442 |
+
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
|
| 443 |
+
"top": [], "best": {}, "gen": 0,
|
| 444 |
+
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
|
| 445 |
+
}
|
| 446 |
+
|
| 447 |
+
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms, metric_choice):
|
| 448 |
+
rng = random.Random(int(seed))
|
| 449 |
+
self.stop_flag = False
|
| 450 |
+
self.running = True
|
| 451 |
+
|
| 452 |
+
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
|
| 453 |
+
for g in pop:
|
| 454 |
+
fit, acc = evaluate_genome(g, dataset, explore)
|
| 455 |
+
g.fitness, g.acc = fit, acc
|
| 456 |
+
|
| 457 |
+
history: List[Tuple[int,float,float]] = []
|
| 458 |
+
|
| 459 |
+
for gen in range(1, generations+1):
|
| 460 |
+
if self.stop_flag: break
|
| 461 |
+
|
| 462 |
+
k = max(2, int(2 + exploit * 5))
|
| 463 |
+
parents = [min(rng.sample(pop, k=k), key=lambda x: x.fitness) for _ in range(pop_size)]
|
| 464 |
+
|
| 465 |
+
children = []
|
| 466 |
+
for i in range(0, pop_size, 2):
|
| 467 |
+
a = parents[i]; b = parents[(i+1) % pop_size]
|
| 468 |
+
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
|
| 469 |
+
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
|
| 470 |
+
children.extend([child1, child2])
|
| 471 |
+
children = children[:pop_size]
|
| 472 |
+
|
| 473 |
+
for c in children:
|
| 474 |
+
fit, acc = evaluate_genome(c, dataset, explore)
|
| 475 |
+
c.fitness, c.acc = fit, acc
|
| 476 |
+
|
| 477 |
+
elite_n = max(1, pop_size // 10)
|
| 478 |
+
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
|
| 479 |
+
pop = sorted(children, key=lambda x: x.fitness)
|
| 480 |
+
pop[-elite_n:] = elites
|
| 481 |
+
|
| 482 |
+
best = min(pop, key=lambda x: x.fitness)
|
| 483 |
+
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
|
| 484 |
+
|
| 485 |
+
P = np.stack([g.vector() for g in pop], axis=0)
|
| 486 |
+
P3 = sphere_project(P)
|
| 487 |
+
sphere_fig = make_sphere_figure(P3, pop, gen)
|
| 488 |
+
hist_fig = make_history_figure(history, metric_choice)
|
| 489 |
+
|
| 490 |
+
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
|
| 491 |
+
top_table = [{
|
| 492 |
+
"gen": gen, "fitness": round(t.fitness, 4),
|
| 493 |
+
"accuracy": (None if t.acc is None else round(float(t.acc), 4)),
|
| 494 |
+
"d_model": t.d_model, "layers": t.n_layers, "heads": t.n_heads,
|
| 495 |
+
"ffn_mult": t.ffn_mult, "mem": t.memory_tokens, "dropout": t.dropout,
|
| 496 |
+
"params_approx": approx_params(t)
|
| 497 |
+
} for t in top]
|
| 498 |
+
best_card = top_table[0] if top_table else {}
|
| 499 |
+
|
| 500 |
+
with self.lock:
|
| 501 |
+
self.state = {
|
| 502 |
+
"sphere_html": fig_to_html(sphere_fig),
|
| 503 |
+
"history_html": fig_to_html(hist_fig),
|
| 504 |
+
"top": top_table,
|
| 505 |
+
"best": best_card,
|
| 506 |
+
"gen": gen,
|
| 507 |
+
"dataset": dataset,
|
| 508 |
+
"metric": metric_choice
|
| 509 |
+
}
|
| 510 |
+
|
| 511 |
+
time.sleep(max(0.0, pace_ms/1000.0))
|
| 512 |
+
self.running = False
|
| 513 |
+
|
| 514 |
+
def start(self, *args, **kwargs):
|
| 515 |
+
if self.running: return
|
| 516 |
+
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
|
| 517 |
+
t.start()
|
| 518 |
+
|
| 519 |
+
def stop(self): self.stop_flag = True
|
| 520 |
+
|
| 521 |
+
def clear(self):
|
| 522 |
+
# stop and reset to idle sphere
|
| 523 |
+
self.stop_flag = True
|
| 524 |
+
idle = fig_to_html(make_idle_sphere())
|
| 525 |
+
with self.lock:
|
| 526 |
+
self.running = False
|
| 527 |
+
self.state = {
|
| 528 |
+
"sphere_html": idle,
|
| 529 |
+
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
|
| 530 |
+
"top": [], "best": {}, "gen": 0,
|
| 531 |
+
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
runner = EvoRunner()
|
| 535 |
+
|
| 536 |
+
# =========================
|
| 537 |
+
# UI CALLBACKS
|
| 538 |
+
# =========================
|
| 539 |
+
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
|
| 540 |
+
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
|
| 541 |
+
return (gr.update(interactive=False), gr.update(interactive=True), gr.update(interactive=False))
|
| 542 |
+
|
| 543 |
+
def stop_evo():
|
| 544 |
+
runner.stop()
|
| 545 |
+
return (gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True))
|
| 546 |
+
|
| 547 |
+
def clear_evo():
|
| 548 |
+
runner.clear()
|
| 549 |
+
sphere_html, history_html, stats_md, df, gen_counter_md = poll_state()
|
| 550 |
+
return sphere_html, history_html, stats_md, df, gen_counter_md, gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True)
|
| 551 |
+
|
| 552 |
+
def poll_state():
|
| 553 |
+
with runner.lock:
|
| 554 |
+
s = runner.state.copy()
|
| 555 |
+
sphere_html = s.get("sphere_html", "")
|
| 556 |
+
history_html = s.get("history_html", "")
|
| 557 |
+
best = s.get("best", {})
|
| 558 |
+
gen = s.get("gen", 0)
|
| 559 |
+
dataset = s.get("dataset", "Demo (Surrogate)")
|
| 560 |
+
top = s.get("top", [])
|
| 561 |
+
|
| 562 |
+
if best:
|
| 563 |
+
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
|
| 564 |
+
stats_md = (
|
| 565 |
+
f"**Dataset:** {dataset} \n"
|
| 566 |
+
f"**Generation:** {gen} \n"
|
| 567 |
+
f"**Best fitness:** {best.get('fitness','–')} \n"
|
| 568 |
+
f"**Best accuracy:** {acc_txt} \n"
|
| 569 |
+
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
|
| 570 |
+
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
|
| 571 |
+
f"dropout={best.get('dropout')} \n"
|
| 572 |
+
f"**~Params (rough):** {best.get('params_approx'):,}"
|
| 573 |
+
)
|
| 574 |
+
else:
|
| 575 |
+
stats_md = "Ready. Press **Start** to begin evolution."
|
| 576 |
+
|
| 577 |
+
df = pd.DataFrame(top)
|
| 578 |
+
gen_counter_md = f"Gen **{gen}**"
|
| 579 |
+
return sphere_html, history_html, stats_md, df, gen_counter_md
|
| 580 |
+
|
| 581 |
+
def export_snapshot():
|
| 582 |
+
from json import dumps
|
| 583 |
+
with runner.lock:
|
| 584 |
+
payload = dumps(runner.state, default=lambda o: o, indent=2)
|
| 585 |
+
path = "evo_snapshot.json"
|
| 586 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 587 |
+
f.write(payload)
|
| 588 |
+
return path
|
| 589 |
|
| 590 |
# =========================
|
| 591 |
# BUILD ENHANCED UI
|
|
|
|
| 593 |
with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
|
| 594 |
# Header
|
| 595 |
with gr.Column(elem_id="header"):
|
| 596 |
+
gr.Markdown("## 🧬 Neuroevolution Playground")
|
| 597 |
+
gr.Markdown("Evolve neural architectures using genetic algorithms")
|
| 598 |
+
|
|
|
|
| 599 |
with gr.Row():
|
| 600 |
# Left Panel - Controls
|
| 601 |
with gr.Column(scale=1):
|
| 602 |
# Parameters Group
|
| 603 |
with gr.Group(elem_classes=["control-group"]):
|
| 604 |
gr.Markdown("### 🛠 Evolution Parameters")
|
| 605 |
+
|
| 606 |
with gr.Column():
|
| 607 |
dataset = gr.Dropdown(
|
| 608 |
label="Evaluation Dataset",
|
|
|
|
| 610 |
value="Demo (Surrogate)",
|
| 611 |
info="Dataset used for fitness evaluation"
|
| 612 |
)
|
| 613 |
+
|
| 614 |
with gr.Row():
|
| 615 |
with gr.Column():
|
| 616 |
+
pop = gr.Slider(8, 80, value=24, step=2, label="Population Size", elem_classes=["param-slider"])
|
| 617 |
+
gens = gr.Slider(5, 200, value=60, step=1, label="Max Generations", elem_classes=["param-slider"])
|
| 618 |
+
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation Rate", elem_classes=["param-slider"])
|
|
|
|
|
|
|
|
|
|
| 619 |
with gr.Column():
|
| 620 |
+
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration", elem_classes=["param-slider"])
|
| 621 |
+
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation", elem_classes=["param-slider"])
|
|
|
|
|
|
|
| 622 |
seed = gr.Number(value=42, label="Random Seed", precision=0)
|
| 623 |
+
|
| 624 |
+
pace = gr.Slider(0, 1000, value=120, step=10, label="Simulation Speed (ms)", elem_classes=["param-slider"])
|
| 625 |
+
metric_choice = gr.Radio(choices=["Accuracy", "Fitness"], value="Accuracy", label="History Metric Display")
|
| 626 |
+
|
|
|
|
|
|
|
| 627 |
# Status Panel
|
| 628 |
with gr.Group(elem_classes=["panel", "stats-panel"]):
|
| 629 |
gr.Markdown("### 📊 Current Status")
|
| 630 |
stats_md = gr.Markdown("Ready. Press **Start** to begin evolution.", elem_id="stats")
|
| 631 |
+
|
| 632 |
# Action Buttons
|
| 633 |
with gr.Row(elem_classes=["action-buttons"]):
|
| 634 |
start = gr.Button("▶ Start Evolution", variant="primary", elem_classes=["btn-primary"])
|
| 635 |
+
stop = gr.Button("⏹ Stop", variant="secondary", elem_classes=["btn-danger"], interactive=False)
|
| 636 |
clear = gr.Button("↻ Reset", elem_classes=["btn-secondary"])
|
| 637 |
+
|
| 638 |
# Export
|
| 639 |
with gr.Group(elem_classes=["panel"]):
|
| 640 |
gr.Markdown("### 💾 Export Results")
|
| 641 |
with gr.Row():
|
| 642 |
export_btn = gr.Button("Save Snapshot (JSON)")
|
| 643 |
export_file = gr.File(label="Download snapshot", visible=False)
|
| 644 |
+
|
| 645 |
# Right Panel - Visualizations
|
| 646 |
with gr.Column(scale=2):
|
| 647 |
# 3D Visualization
|
|
|
|
| 651 |
gr.Markdown("### 🌐 Architecture Space", elem_classes=["viz-title"])
|
| 652 |
gen_counter = gr.Markdown("", elem_classes=["gen-counter"])
|
| 653 |
sphere_html = gr.HTML()
|
| 654 |
+
|
| 655 |
# History Visualization
|
| 656 |
with gr.Group(elem_classes=["panel", "viz-panel"]):
|
| 657 |
with gr.Column(elem_classes=["viz-header"]):
|
| 658 |
gr.Markdown("### 📈 Performance History", elem_classes=["viz-title"])
|
| 659 |
hist_html = gr.HTML()
|
| 660 |
+
|
| 661 |
# Results Table
|
| 662 |
with gr.Group(elem_classes=["panel"]):
|
| 663 |
gr.Markdown("### 🏆 Top Genomes")
|
| 664 |
with gr.Column(elem_classes=["data-table"]):
|
| 665 |
+
top_df = gr.Dataframe(label="", wrap=True, interactive=False)
|
| 666 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
# Footer
|
| 668 |
with gr.Column(elem_classes=["footer"]):
|
| 669 |
+
gr.Markdown("Neuroevolution Playground v1.0 • Plotly + Gradio")
|
| 670 |
+
|
| 671 |
# Wiring
|
| 672 |
start.click(
|
| 673 |
+
start_evo,
|
| 674 |
+
[dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice],
|
| 675 |
[start, stop, clear]
|
| 676 |
)
|
| 677 |
stop.click(stop_evo, [], [start, stop, clear])
|
| 678 |
clear.click(
|
| 679 |
+
clear_evo,
|
| 680 |
+
[],
|
| 681 |
+
[sphere_html, hist_html, stats_md, top_df, gen_counter, start, stop, clear]
|
| 682 |
)
|
| 683 |
export_btn.click(export_snapshot, [], [export_file])
|
| 684 |
+
|
| 685 |
# State polling
|
| 686 |
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
|
| 687 |
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
|
| 688 |
|
| 689 |
if __name__ == "__main__":
|
| 690 |
+
demo.launch()
|