Update app.py
Browse files
app.py
CHANGED
|
@@ -213,9 +213,7 @@ if __name__ == "__main__":
|
|
| 213 |
|
| 214 |
gr.Markdown("""
|
| 215 |
# Chest X-ray HybridGNet Segmentation.
|
| 216 |
-
|
| 217 |
-
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
|
| 218 |
-
|
| 219 |
Instructions:
|
| 220 |
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
|
| 221 |
2. Click on "Segment Image".
|
|
@@ -240,47 +238,7 @@ if __name__ == "__main__":
|
|
| 240 |
image_output = gr.Image(type="filepath", height=750)
|
| 241 |
results = gr.File()
|
| 242 |
|
| 243 |
-
|
| 244 |
-
If you use this code, please cite:
|
| 245 |
-
|
| 246 |
-
```
|
| 247 |
-
@article{gaggion2022TMI,
|
| 248 |
-
doi = {10.1109/tmi.2022.3224660},
|
| 249 |
-
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
|
| 250 |
-
year = 2022,
|
| 251 |
-
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
|
| 252 |
-
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
|
| 253 |
-
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
|
| 254 |
-
journal = {{IEEE} Transactions on Medical Imaging}
|
| 255 |
-
}
|
| 256 |
-
```
|
| 257 |
-
|
| 258 |
-
This model was trained following the procedure explained on:
|
| 259 |
-
|
| 260 |
-
```
|
| 261 |
-
@INPROCEEDINGS{gaggion2022ISBI,
|
| 262 |
-
author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo},
|
| 263 |
-
booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
|
| 264 |
-
title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models},
|
| 265 |
-
year={2023},
|
| 266 |
-
volume={},
|
| 267 |
-
number={},
|
| 268 |
-
pages={1-5},
|
| 269 |
-
doi={10.1109/ISBI53787.2023.10230691}
|
| 270 |
-
}
|
| 271 |
-
```
|
| 272 |
-
|
| 273 |
-
Example images extracted from Wikipedia, released under:
|
| 274 |
-
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
|
| 275 |
-
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
|
| 276 |
-
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
|
| 277 |
-
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
|
| 278 |
-
|
| 279 |
-
Author: Nicolás Gaggion
|
| 280 |
-
Website: [ngaggion.github.io](https://ngaggion.github.io/)
|
| 281 |
-
|
| 282 |
-
""")
|
| 283 |
-
|
| 284 |
|
| 285 |
clear_button.click(lambda: None, None, image_input, queue=False)
|
| 286 |
clear_button.click(lambda: None, None, image_output, queue=False)
|
|
|
|
| 213 |
|
| 214 |
gr.Markdown("""
|
| 215 |
# Chest X-ray HybridGNet Segmentation.
|
| 216 |
+
|
|
|
|
|
|
|
| 217 |
Instructions:
|
| 218 |
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
|
| 219 |
2. Click on "Segment Image".
|
|
|
|
| 238 |
image_output = gr.Image(type="filepath", height=750)
|
| 239 |
results = gr.File()
|
| 240 |
|
| 241 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
clear_button.click(lambda: None, None, image_input, queue=False)
|
| 244 |
clear_button.click(lambda: None, None, image_output, queue=False)
|