IFMedTechdemo commited on
Commit
75d9b43
·
verified ·
1 Parent(s): d7d81fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -44
app.py CHANGED
@@ -213,9 +213,7 @@ if __name__ == "__main__":
213
 
214
  gr.Markdown("""
215
  # Chest X-ray HybridGNet Segmentation.
216
-
217
- Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
218
-
219
  Instructions:
220
  1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
221
  2. Click on "Segment Image".
@@ -240,47 +238,7 @@ if __name__ == "__main__":
240
  image_output = gr.Image(type="filepath", height=750)
241
  results = gr.File()
242
 
243
- gr.Markdown("""
244
- If you use this code, please cite:
245
-
246
- ```
247
- @article{gaggion2022TMI,
248
- doi = {10.1109/tmi.2022.3224660},
249
- url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
250
- year = 2022,
251
- publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
252
- author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
253
- title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
254
- journal = {{IEEE} Transactions on Medical Imaging}
255
- }
256
- ```
257
-
258
- This model was trained following the procedure explained on:
259
-
260
- ```
261
- @INPROCEEDINGS{gaggion2022ISBI,
262
- author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo},
263
- booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
264
- title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models},
265
- year={2023},
266
- volume={},
267
- number={},
268
- pages={1-5},
269
- doi={10.1109/ISBI53787.2023.10230691}
270
- }
271
- ```
272
-
273
- Example images extracted from Wikipedia, released under:
274
- 1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
275
- 2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
276
- 3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
277
- 4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
278
-
279
- Author: Nicolás Gaggion
280
- Website: [ngaggion.github.io](https://ngaggion.github.io/)
281
-
282
- """)
283
-
284
 
285
  clear_button.click(lambda: None, None, image_input, queue=False)
286
  clear_button.click(lambda: None, None, image_output, queue=False)
 
213
 
214
  gr.Markdown("""
215
  # Chest X-ray HybridGNet Segmentation.
216
+
 
 
217
  Instructions:
218
  1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
219
  2. Click on "Segment Image".
 
238
  image_output = gr.Image(type="filepath", height=750)
239
  results = gr.File()
240
 
241
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
 
243
  clear_button.click(lambda: None, None, image_input, queue=False)
244
  clear_button.click(lambda: None, None, image_output, queue=False)