Spaces:
Paused
Paused
Update app.py
Browse filesimage → OCR (Chandra/Dots via radio) → take final Raw stream text → ClinicalNER → spell-check (TF-IDF / SymSpell / RapidFuzz via radio) → show final Markdown with scores.
It also dynamically pulls ner.py, tfidf_phonetic.py, symspell_matcher.py, rapidfuzz_matcher.py, and your drug_dictionary.csv from your private HF repo
app.py
CHANGED
|
@@ -1,7 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
from threading import Thread
|
| 4 |
+
from typing import Iterable, Dict, Any, Optional, List
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
from transformers import (
|
| 12 |
+
Qwen3VLForConditionalGeneration,
|
| 13 |
+
AutoModelForCausalLM,
|
| 14 |
+
AutoProcessor,
|
| 15 |
+
TextIteratorStreamer,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
from gradio.themes import Soft
|
| 19 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 20 |
+
|
| 21 |
+
# -----------------------------
|
| 22 |
+
# Private repo: dynamic import
|
| 23 |
+
# -----------------------------
|
| 24 |
+
import importlib.util
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
| 26 |
+
|
| 27 |
+
REPO_ID = "IFMedTech/new_model_private" # your private backend repo
|
| 28 |
+
|
| 29 |
+
# Map filenames to exported class names
|
| 30 |
+
PY_MODULES = {
|
| 31 |
+
"ner.py": "ClinicalNER",
|
| 32 |
+
"tfidf_phonetic.py": "TfidfPhoneticMatcher",
|
| 33 |
+
"symspell_matcher.py": "SymSpellMatcher",
|
| 34 |
+
"rapidfuzz_matcher.py": "RapidFuzzMatcher",
|
| 35 |
+
# 'drug_dictionary.csv' is data, not a module
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") or os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 39 |
+
|
| 40 |
+
def _dynamic_import(module_path: str, class_name: str):
|
| 41 |
+
spec = importlib.util.spec_from_file_location(class_name, module_path)
|
| 42 |
+
module = importlib.util.module_from_spec(spec)
|
| 43 |
+
spec.loader.exec_module(module) # type: ignore
|
| 44 |
+
return getattr(module, class_name)
|
| 45 |
+
|
| 46 |
+
# Load all private classes and data (CSV)
|
| 47 |
+
priv_classes: Dict[str, Any] = {}
|
| 48 |
+
drug_csv_path: Optional[str] = None
|
| 49 |
+
try:
|
| 50 |
+
if HF_TOKEN is None:
|
| 51 |
+
print("[Private] WARNING: HUGGINGFACE_TOKEN not set; NER/Spell-check will be unavailable.")
|
| 52 |
+
else:
|
| 53 |
+
for fname, cls in PY_MODULES.items():
|
| 54 |
+
path = hf_hub_download(repo_id=REPO_ID, filename=fname, token=HF_TOKEN)
|
| 55 |
+
if cls:
|
| 56 |
+
priv_classes[cls] = _dynamic_import(path, cls)
|
| 57 |
+
print(f"[Private] Loaded class: {cls} from {fname}")
|
| 58 |
+
# Download the drug dictionary CSV
|
| 59 |
+
drug_csv_path = hf_hub_download(repo_id=REPO_ID, filename="drug_dictionary.csv", token=HF_TOKEN)
|
| 60 |
+
print(f"[Private] Downloaded CSV at: {drug_csv_path}")
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"[Private] ERROR loading private backend: {e}")
|
| 63 |
+
priv_classes = {}
|
| 64 |
+
drug_csv_path = None
|
| 65 |
+
|
| 66 |
+
# ----------------------------
|
| 67 |
+
# THEME
|
| 68 |
+
# ----------------------------
|
| 69 |
+
colors.steel_blue = colors.Color(
|
| 70 |
+
name="steel_blue",
|
| 71 |
+
c50="#EBF3F8",
|
| 72 |
+
c100="#D3E5F0",
|
| 73 |
+
c200="#A8CCE1",
|
| 74 |
+
c300="#7DB3D2",
|
| 75 |
+
c400="#529AC3",
|
| 76 |
+
c500="#4682B4",
|
| 77 |
+
c600="#3E72A0",
|
| 78 |
+
c700="#36638C",
|
| 79 |
+
c800="#2E5378",
|
| 80 |
+
c900="#264364",
|
| 81 |
+
c950="#1E3450",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
class SteelBlueTheme(Soft):
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
*,
|
| 88 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 89 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 90 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 91 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 92 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 93 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 94 |
+
),
|
| 95 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 96 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 97 |
+
),
|
| 98 |
+
):
|
| 99 |
+
super().__init__(
|
| 100 |
+
primary_hue=primary_hue,
|
| 101 |
+
secondary_hue=secondary_hue,
|
| 102 |
+
neutral_hue=neutral_hue,
|
| 103 |
+
text_size=text_size,
|
| 104 |
+
font=font,
|
| 105 |
+
font_mono=font_mono,
|
| 106 |
+
)
|
| 107 |
+
super().set(
|
| 108 |
+
background_fill_primary="*primary_50",
|
| 109 |
+
background_fill_primary_dark="*primary_900",
|
| 110 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 111 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 112 |
+
button_primary_text_color="white",
|
| 113 |
+
button_primary_text_color_hover="white",
|
| 114 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 115 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 116 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 117 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 118 |
+
button_secondary_text_color="black",
|
| 119 |
+
button_secondary_text_color_hover="white",
|
| 120 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 121 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 122 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 123 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 124 |
+
slider_color="*secondary_500",
|
| 125 |
+
slider_color_dark="*secondary_600",
|
| 126 |
+
block_title_text_weight="600",
|
| 127 |
+
block_border_width="3px",
|
| 128 |
+
block_shadow="*shadow_drop_lg",
|
| 129 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 130 |
+
button_large_padding="11px",
|
| 131 |
+
color_accent_soft="*primary_100",
|
| 132 |
+
block_label_background_fill="*primary_200",
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
steel_blue_theme = SteelBlueTheme()
|
| 136 |
+
|
| 137 |
+
css = """
|
| 138 |
+
#main-title h1 { font-size: 2.3em !important; }
|
| 139 |
+
#output-title h2 { font-size: 2.1em !important; }
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
# ----------------------------
|
| 143 |
+
# RUNTIME / DEVICE
|
| 144 |
+
# ----------------------------
|
| 145 |
+
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "0")
|
| 146 |
+
print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 147 |
+
print("torch.__version__ =", torch.__version__)
|
| 148 |
+
print("torch.version.cuda =", torch.version.cuda)
|
| 149 |
+
print("cuda available =", torch.cuda.is_available())
|
| 150 |
+
print("cuda device count =", torch.cuda.device_count())
|
| 151 |
+
if torch.cuda.is_available():
|
| 152 |
+
print("using device =", torch.cuda.get_device_name(0))
|
| 153 |
+
|
| 154 |
+
use_cuda = torch.cuda.is_available()
|
| 155 |
+
device = torch.device("cuda:0" if use_cuda else "cpu")
|
| 156 |
+
if use_cuda:
|
| 157 |
+
torch.backends.cudnn.benchmark = True
|
| 158 |
+
|
| 159 |
+
DTYPE_FP16 = torch.float16 if use_cuda else torch.float32
|
| 160 |
+
DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
| 161 |
+
|
| 162 |
+
# ----------------------------
|
| 163 |
+
# MODELS: Chandra-OCR + Dots.OCR
|
| 164 |
+
# ----------------------------
|
| 165 |
+
# 1) Chandra-OCR (Qwen3VL)
|
| 166 |
+
MODEL_ID_V = "datalab-to/chandra"
|
| 167 |
+
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 168 |
+
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 169 |
+
MODEL_ID_V, trust_remote_code=True, torch_dtype=DTYPE_FP16
|
| 170 |
+
).to(device).eval()
|
| 171 |
+
|
| 172 |
+
# 2) Dots.OCR (flash_attn2 if available, else SDPA)
|
| 173 |
+
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 174 |
+
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 175 |
+
attn_impl = "sdpa"
|
| 176 |
+
try:
|
| 177 |
+
import flash_attn # noqa: F401
|
| 178 |
+
if use_cuda:
|
| 179 |
+
attn_impl = "flash_attention_2"
|
| 180 |
+
except Exception:
|
| 181 |
+
attn_impl = "sdpa"
|
| 182 |
+
|
| 183 |
+
model_d = AutoModelForCausalLM.from_pretrained(
|
| 184 |
+
MODEL_PATH_D,
|
| 185 |
+
attn_implementation=attn_impl,
|
| 186 |
+
torch_dtype=DTYPE_BF16,
|
| 187 |
+
device_map="auto" if use_cuda else None,
|
| 188 |
+
trust_remote_code=True
|
| 189 |
+
).eval()
|
| 190 |
+
if not use_cuda:
|
| 191 |
+
model_d.to(device)
|
| 192 |
+
|
| 193 |
+
# ----------------------------
|
| 194 |
+
# GENERATION (OCR → NER → Spell-check)
|
| 195 |
+
# ----------------------------
|
| 196 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 197 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 198 |
+
|
| 199 |
+
@spaces.GPU
|
| 200 |
+
def generate_image(model_name: str,
|
| 201 |
+
text: str,
|
| 202 |
+
image: Image.Image,
|
| 203 |
+
max_new_tokens: int,
|
| 204 |
+
temperature: float,
|
| 205 |
+
top_p: float,
|
| 206 |
+
top_k: int,
|
| 207 |
+
repetition_penalty: float,
|
| 208 |
+
spell_algo: str):
|
| 209 |
+
"""
|
| 210 |
+
1) Streams OCR tokens to Raw output (unchanged).
|
| 211 |
+
2) After stream ends, runs ClinicalNER on FINAL RAW text → list[str] meds.
|
| 212 |
+
3) Runs selected spell-check approach on that list (top-5 with scores).
|
| 213 |
+
4) Markdown shows: OCR text + Clinical NER + Spell-check suggestions.
|
| 214 |
+
"""
|
| 215 |
+
if image is None:
|
| 216 |
+
yield "Please upload an image.", "Please upload an image."
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
if model_name == "Chandra-OCR":
|
| 220 |
+
processor, model = processor_v, model_v
|
| 221 |
+
elif model_name == "Dots.OCR":
|
| 222 |
+
processor, model = processor_d, model_d
|
| 223 |
+
else:
|
| 224 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
# Prepare prompt
|
| 228 |
+
messages = [{
|
| 229 |
+
"role": "user",
|
| 230 |
+
"content": [
|
| 231 |
+
{"type": "image"},
|
| 232 |
+
{"type": "text", "text": text},
|
| 233 |
+
]
|
| 234 |
+
}]
|
| 235 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 236 |
+
|
| 237 |
+
# Preprocess
|
| 238 |
+
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True)
|
| 239 |
+
inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 240 |
+
|
| 241 |
+
# Streamer
|
| 242 |
+
tokenizer = getattr(processor, "tokenizer", None) or processor
|
| 243 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 244 |
+
|
| 245 |
+
gen_kwargs = dict(
|
| 246 |
+
**inputs,
|
| 247 |
+
streamer=streamer,
|
| 248 |
+
max_new_tokens=max_new_tokens,
|
| 249 |
+
do_sample=True,
|
| 250 |
+
temperature=temperature,
|
| 251 |
+
top_p=top_p,
|
| 252 |
+
top_k=top_k,
|
| 253 |
+
repetition_penalty=repetition_penalty,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Start generation
|
| 257 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 258 |
+
thread.start()
|
| 259 |
+
|
| 260 |
+
# 1) live OCR stream to Raw & Markdown mirrors during stream
|
| 261 |
+
buffer = ""
|
| 262 |
+
for new_text in streamer:
|
| 263 |
+
buffer += new_text.replace("<|im_end|>", "")
|
| 264 |
+
time.sleep(0.01)
|
| 265 |
+
yield buffer, buffer
|
| 266 |
+
|
| 267 |
+
# >>> Final RAW text for downstream steps <<<
|
| 268 |
+
final_ocr_text = buffer
|
| 269 |
+
|
| 270 |
+
# 2) ClinicalNER
|
| 271 |
+
try:
|
| 272 |
+
if "ClinicalNER" in priv_classes:
|
| 273 |
+
ClinicalNER = priv_classes["ClinicalNER"]
|
| 274 |
+
ner = ClinicalNER(token=HF_TOKEN) # you can pass model_id=... if custom
|
| 275 |
+
meds: List[str] = ner(final_ocr_text) or []
|
| 276 |
+
else:
|
| 277 |
+
meds = []
|
| 278 |
+
print("[NER] ClinicalNER not available.")
|
| 279 |
+
except Exception as e:
|
| 280 |
+
meds = []
|
| 281 |
+
print(f"[NER] Error running ClinicalNER: {e}")
|
| 282 |
+
|
| 283 |
+
# Build Markdown with OCR + NER section
|
| 284 |
+
md = final_ocr_text
|
| 285 |
+
md += "\n\n---\n### Clinical NER (Medications)\n"
|
| 286 |
+
if meds:
|
| 287 |
+
for m in meds:
|
| 288 |
+
md += f"- {m}\n"
|
| 289 |
+
else:
|
| 290 |
+
md += "- None detected\n"
|
| 291 |
+
|
| 292 |
+
# 3) Spell-check on NER output using selected approach
|
| 293 |
+
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 294 |
+
corr: Dict[str, List] = {}
|
| 295 |
+
try:
|
| 296 |
+
if meds and drug_csv_path:
|
| 297 |
+
if spell_algo == "TF-IDF + Phonetic" and "TfidfPhoneticMatcher" in priv_classes:
|
| 298 |
+
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 299 |
+
checker = Cls(csv_path=drug_csv_path, column="drug_name", ngram_size=3, phonetic_weight=0.4)
|
| 300 |
+
corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 301 |
+
|
| 302 |
+
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 303 |
+
Cls = priv_classes["SymSpellMatcher"]
|
| 304 |
+
checker = Cls(csv_path=drug_csv_path, column="drug_name", max_edit=2, prefix_len=7)
|
| 305 |
+
corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 306 |
+
|
| 307 |
+
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 308 |
+
Cls = priv_classes["RapidFuzzMatcher"]
|
| 309 |
+
checker = Cls(csv_path=drug_csv_path, column="drug_name")
|
| 310 |
+
corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 311 |
+
else:
|
| 312 |
+
spell_section += "- Spell-check backend unavailable.\n"
|
| 313 |
+
else:
|
| 314 |
+
spell_section += "- No NER output or dictionary missing.\n"
|
| 315 |
+
except Exception as e:
|
| 316 |
+
spell_section += f"- Spell-check error: {e}\n"
|
| 317 |
+
|
| 318 |
+
# Format suggestions
|
| 319 |
+
if corr:
|
| 320 |
+
for raw in meds:
|
| 321 |
+
cand = corr.get(raw, [])
|
| 322 |
+
if cand:
|
| 323 |
+
spell_section += f"- **{raw}**\n"
|
| 324 |
+
for c, s in cand:
|
| 325 |
+
spell_section += f" - {c} (score={s:.3f})\n"
|
| 326 |
+
else:
|
| 327 |
+
spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 328 |
+
|
| 329 |
+
final_md = md + spell_section
|
| 330 |
+
|
| 331 |
+
# 4) Final yield: raw unchanged; Markdown has NER + spell-check
|
| 332 |
+
yield final_ocr_text, final_md
|
| 333 |
+
|
| 334 |
+
# ----------------------------
|
| 335 |
+
# UI
|
| 336 |
+
# ----------------------------
|
| 337 |
+
image_examples = [
|
| 338 |
+
["OCR the content perfectly.", "examples/3.jpg"],
|
| 339 |
+
["Perform OCR on the image.", "examples/1.jpg"],
|
| 340 |
+
["Extract the contents. [page].", "examples/2.jpg"],
|
| 341 |
+
]
|
| 342 |
+
|
| 343 |
+
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 344 |
+
gr.Markdown("# **Multimodal OCR3**", elem_id="main-title")
|
| 345 |
+
with gr.Row():
|
| 346 |
+
with gr.Column(scale=2):
|
| 347 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 348 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 349 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 350 |
+
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 351 |
+
|
| 352 |
+
# Spell-check selection
|
| 353 |
+
spell_choice = gr.Radio(
|
| 354 |
+
choices=["TF-IDF + Phonetic", "SymSpell", "RapidFuzz"],
|
| 355 |
+
label="Select Spell-check Approach",
|
| 356 |
+
value="TF-IDF + Phonetic"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
with gr.Accordion("Advanced options", open=False):
|
| 360 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 361 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
|
| 362 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 363 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 364 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
|
| 365 |
+
|
| 366 |
+
with gr.Column(scale=3):
|
| 367 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 368 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 369 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 370 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 371 |
+
|
| 372 |
+
model_choice = gr.Radio(
|
| 373 |
+
choices=["Chandra-OCR", "Dots.OCR"],
|
| 374 |
+
label="Select OCR Model",
|
| 375 |
+
value="Chandra-OCR"
|
| 376 |
+
)
|
| 377 |
|
| 378 |
+
image_submit.click(
|
| 379 |
+
fn=generate_image,
|
| 380 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, spell_choice],
|
| 381 |
+
outputs=[output, markdown_output]
|
| 382 |
+
)
|
| 383 |
|
| 384 |
+
if __name__ == "__main__":
|
| 385 |
+
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|