| { | |
| "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json", | |
| "version": "0.1.3", | |
| "changelog": { | |
| "0.1.3": "add name tag", | |
| "0.1.2": "update the workflow figure", | |
| "0.1.1": "update to use monai 1.1.0", | |
| "0.1.0": "complete the model package" | |
| }, | |
| "monai_version": "1.1.0", | |
| "pytorch_version": "1.13.0", | |
| "numpy_version": "1.22.2", | |
| "optional_packages_version": { | |
| "scikit-image": "0.19.3", | |
| "scipy": "1.8.1", | |
| "tqdm": "4.64.1", | |
| "pillow": "9.0.1" | |
| }, | |
| "name": "Nuclear segmentation and classification", | |
| "task": "Nuclear segmentation and classification", | |
| "description": "A simultaneous segmentation and classification of nuclei within multitissue histology images based on CoNSeP data", | |
| "authors": "MONAI team", | |
| "copyright": "Copyright (c) MONAI Consortium", | |
| "data_source": "https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/", | |
| "data_type": "numpy", | |
| "image_classes": "RGB image with intensity between 0 and 255", | |
| "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification", | |
| "pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification", | |
| "eval_metrics": { | |
| "Binary Dice": 0.8293, | |
| "PQ": 0.4936, | |
| "F1d": 0.748 | |
| }, | |
| "intended_use": "This is an example, not to be used for diagnostic purposes", | |
| "references": [ | |
| "Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499" | |
| ], | |
| "network_data_format": { | |
| "inputs": { | |
| "image": { | |
| "type": "image", | |
| "format": "magnitude", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| "256", | |
| "256" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 255 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "image" | |
| } | |
| } | |
| }, | |
| "outputs": { | |
| "nucleus_prediction": { | |
| "type": "probability", | |
| "format": "segmentation", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "background", | |
| "1": "nuclei" | |
| } | |
| }, | |
| "horizontal_vertical": { | |
| "type": "probability", | |
| "format": "regression", | |
| "num_channels": 2, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "horizontal distances map", | |
| "1": "vertical distances map" | |
| } | |
| }, | |
| "type_prediction": { | |
| "type": "probability", | |
| "format": "classification", | |
| "num_channels": 2, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "background", | |
| "1": "type of nucleus for each pixel" | |
| } | |
| } | |
| } | |
| } | |
| } | |