haritsahm
commited on
Commit
·
a1f1417
1
Parent(s):
18ab064
Update codes to enable device selection
Browse files- app.py +29 -5
- configs/inference.json +1 -1
app.py
CHANGED
|
@@ -1,11 +1,24 @@
|
|
|
|
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
-
|
| 3 |
-
from monai.bundle import ConfigParser
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
parser = ConfigParser()
|
| 8 |
-
parser.read_config(f=
|
| 9 |
parser.read_meta(f="configs/metadata.json")
|
| 10 |
|
| 11 |
inference = parser.get_parsed_content("inferer")
|
|
@@ -14,9 +27,17 @@ network = parser.get_parsed_content("network_def")
|
|
| 14 |
preprocess = parser.get_parsed_content("preprocessing")
|
| 15 |
postprocess = parser.get_parsed_content("postprocessing")
|
| 16 |
|
|
|
|
|
|
|
| 17 |
state_dict = torch.load("models/model.pt")
|
| 18 |
network.load_state_dict(state_dict, strict=True)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
label2color = {0: (0, 0, 0),
|
| 21 |
1: (225, 24, 69), # RED
|
| 22 |
2: (135, 233, 17), # GREEN
|
|
@@ -38,8 +59,11 @@ def visualize_instance_seg_mask(mask):
|
|
| 38 |
def query_image(img):
|
| 39 |
data = {"image": img}
|
| 40 |
batch = preprocess(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
network.eval()
|
| 43 |
with torch.no_grad():
|
| 44 |
pred = inference(batch['image'].unsqueeze(dim=0), network)
|
| 45 |
|
|
@@ -65,7 +89,7 @@ with open('Description.md','r') as file:
|
|
| 65 |
markdown_content = file.read()
|
| 66 |
|
| 67 |
demo = gr.Interface(
|
| 68 |
-
query_image,
|
| 69 |
inputs=[gr.Image(type="filepath")],
|
| 70 |
outputs="image",
|
| 71 |
title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
from pathlib import Path
|
| 4 |
+
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from monai.bundle import ConfigParser
|
| 9 |
+
|
| 10 |
+
with open("configs/inference.json") as f:
|
| 11 |
+
inference_config = json.load(f)
|
| 12 |
+
|
| 13 |
+
device = torch.device('cpu')
|
| 14 |
+
if torch.cuda.is_available():
|
| 15 |
+
device = torch.device('cuda:0')
|
| 16 |
+
|
| 17 |
+
# * NOTE: device must be hardcoded, config file won't affect the device selection
|
| 18 |
+
inference_config["device"] = device
|
| 19 |
|
| 20 |
parser = ConfigParser()
|
| 21 |
+
parser.read_config(f=inference_config)
|
| 22 |
parser.read_meta(f="configs/metadata.json")
|
| 23 |
|
| 24 |
inference = parser.get_parsed_content("inferer")
|
|
|
|
| 27 |
preprocess = parser.get_parsed_content("preprocessing")
|
| 28 |
postprocess = parser.get_parsed_content("postprocessing")
|
| 29 |
|
| 30 |
+
use_fp16 = os.environ.get('USE_FP16', False)
|
| 31 |
+
|
| 32 |
state_dict = torch.load("models/model.pt")
|
| 33 |
network.load_state_dict(state_dict, strict=True)
|
| 34 |
|
| 35 |
+
network = network.to(device)
|
| 36 |
+
network.eval()
|
| 37 |
+
|
| 38 |
+
if use_fp16 and torch.cuda.is_available():
|
| 39 |
+
network = network.half()
|
| 40 |
+
|
| 41 |
label2color = {0: (0, 0, 0),
|
| 42 |
1: (225, 24, 69), # RED
|
| 43 |
2: (135, 233, 17), # GREEN
|
|
|
|
| 59 |
def query_image(img):
|
| 60 |
data = {"image": img}
|
| 61 |
batch = preprocess(data)
|
| 62 |
+
batch['image'] = batch['image'].to(device)
|
| 63 |
+
|
| 64 |
+
if use_fp16 and torch.cuda.is_available():
|
| 65 |
+
batch['image'] = batch['image'].half()
|
| 66 |
|
|
|
|
| 67 |
with torch.no_grad():
|
| 68 |
pred = inference(batch['image'].unsqueeze(dim=0), network)
|
| 69 |
|
|
|
|
| 89 |
markdown_content = file.read()
|
| 90 |
|
| 91 |
demo = gr.Interface(
|
| 92 |
+
query_image,
|
| 93 |
inputs=[gr.Image(type="filepath")],
|
| 94 |
outputs="image",
|
| 95 |
title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
|
configs/inference.json
CHANGED
|
@@ -12,7 +12,7 @@
|
|
| 12 |
"hovernet_mode": "fast",
|
| 13 |
"patch_size": 256,
|
| 14 |
"out_size": 164,
|
| 15 |
-
"device": "cpu",
|
| 16 |
"network_def": {
|
| 17 |
"_target_": "HoVerNet",
|
| 18 |
"mode": "@hovernet_mode",
|
|
|
|
| 12 |
"hovernet_mode": "fast",
|
| 13 |
"patch_size": 256,
|
| 14 |
"out_size": 164,
|
| 15 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
| 16 |
"network_def": {
|
| 17 |
"_target_": "HoVerNet",
|
| 18 |
"mode": "@hovernet_mode",
|