|
|
import streamlit as st |
|
|
from llama_cpp import Llama |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
hf_hub_download( |
|
|
repo_id="Qwen/Qwen2.5-7B-Instruct-GGUF", |
|
|
filename="qwen2.5-7b-instruct-q2_k.gguf", |
|
|
local_dir="./models", |
|
|
) |
|
|
|
|
|
|
|
|
@st.cache_resource |
|
|
def load_model(): |
|
|
return Llama( |
|
|
model_path="models/qwen2.5-7b-instruct-q2_k.gguf", |
|
|
n_ctx=1024, |
|
|
n_threads=2, |
|
|
n_threads_batch=2, |
|
|
n_batch=4, |
|
|
n_gpu_layers=0, |
|
|
use_mlock=False, |
|
|
use_mmap=True, |
|
|
verbose=False, |
|
|
) |
|
|
|
|
|
llm = load_model() |
|
|
|
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
|
st.session_state.chat_history = [] |
|
|
|
|
|
st.title("🧠 Qwen2.5-7B-Instruct (Streamlit + GGUF)") |
|
|
st.caption("Powered by `llama.cpp` and `llama-cpp-python` | 2-bit Q2_K inference") |
|
|
|
|
|
with st.sidebar: |
|
|
st.header("⚙️ Settings") |
|
|
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80) |
|
|
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32) |
|
|
temperature = st.slider("Temperature", 0.1, 2.0, 0.7) |
|
|
top_k = st.slider("Top-K", 1, 100, 40) |
|
|
top_p = st.slider("Top-P", 0.1, 1.0, 0.95) |
|
|
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1) |
|
|
|
|
|
|
|
|
user_input = st.chat_input("Ask something...") |
|
|
|
|
|
if user_input: |
|
|
|
|
|
st.session_state.chat_history.append({"role": "user", "content": user_input}) |
|
|
|
|
|
|
|
|
with st.chat_message("user"): |
|
|
st.markdown(user_input) |
|
|
|
|
|
|
|
|
messages = [{"role": "system", "content": system_prompt}] + st.session_state.chat_history |
|
|
|
|
|
|
|
|
with st.chat_message("assistant"): |
|
|
full_response = "" |
|
|
response_area = st.empty() |
|
|
stream = llm.create_chat_completion( |
|
|
messages=messages, |
|
|
max_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
top_k=top_k, |
|
|
top_p=top_p, |
|
|
repeat_penalty=repeat_penalty, |
|
|
stream=True, |
|
|
) |
|
|
|
|
|
for chunk in stream: |
|
|
if "choices" in chunk: |
|
|
delta = chunk["choices"][0]["delta"].get("content", "") |
|
|
full_response += delta |
|
|
response_area.markdown(full_response) |
|
|
|
|
|
st.session_state.chat_history.append({"role": "assistant", "content": full_response}) |
|
|
|