Spaces:
Build error
Build error
| import requests | |
| from bs4 import BeautifulSoup | |
| from sentence_transformers import SentenceTransformer, util | |
| from transformers import pipeline | |
| class URLValidator: | |
| """ | |
| URL Validator class that evaluates the credibility of a webpage | |
| using domain trust, content relevance, fact-checking, bias detection, and citations. | |
| """ | |
| def __init__(self): | |
| # Load models once to avoid redundant API calls | |
| self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') | |
| self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") | |
| self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment") | |
| def fetch_page_content(self, url: str) -> str: | |
| """ Fetches and extracts text content from the given URL. """ | |
| try: | |
| headers = {"User-Agent": "Mozilla/5.0"} # Helps bypass some bot protections | |
| response = requests.get(url, timeout=10, headers=headers) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| content = " ".join([p.text for p in soup.find_all("p")]) | |
| return content if content else "Error: No readable content found on the page." | |
| except requests.exceptions.Timeout: | |
| return "Error: Request timed out." | |
| except requests.exceptions.HTTPError as e: | |
| return f"Error: HTTP {e.response.status_code} - Page may not exist." | |
| except requests.exceptions.RequestException as e: | |
| return f"Error: Unable to fetch URL ({str(e)})." | |
| def get_domain_trust(self, url: str, content: str) -> int: | |
| """ Simulated function to assess domain trust. """ | |
| if "Error" in content: | |
| return 0 | |
| return len(url) % 5 + 1 # Mock trust rating (1-5) | |
| def compute_similarity_score(self, user_query: str, content: str) -> int: | |
| """ Computes semantic similarity between user query and page content. """ | |
| if "Error" in content: | |
| return 0 | |
| return int(util.pytorch_cos_sim( | |
| self.similarity_model.encode(user_query), | |
| self.similarity_model.encode(content) | |
| ).item() * 100) | |
| def check_facts(self, content: str) -> int: | |
| """ Simulated function to check fact reliability. """ | |
| if "Error" in content: | |
| return 0 | |
| return len(content) % 5 + 1 # Mock fact-check rating (1-5) | |
| def detect_bias(self, content: str) -> int: | |
| """ Uses NLP sentiment analysis to detect potential bias in content. """ | |
| if "Error" in content: | |
| return 0 | |
| sentiment_result = self.sentiment_analyzer(content[:512])[0] | |
| return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30 | |
| def get_star_rating(self, score: float) -> tuple: | |
| """ Converts a score (0-100) into a 1-5 star rating. """ | |
| stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale | |
| return stars, "⭐" * stars | |
| def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, final_score) -> str: | |
| """ Generates a human-readable explanation for the score. """ | |
| reasons = [] | |
| if domain_trust < 50: | |
| reasons.append("The source has low domain authority.") | |
| if similarity_score < 50: | |
| reasons.append("The content is not highly relevant to your query.") | |
| if fact_check_score < 50: | |
| reasons.append("Limited fact-checking verification found.") | |
| if bias_score < 50: | |
| reasons.append("Potential bias detected in the content.") | |
| return " ".join(reasons) if reasons else "This source is highly credible and relevant." | |
| def rate_url_validity(self, user_query: str, url: str): | |
| """ Main function to evaluate the validity of a webpage. """ | |
| content = self.fetch_page_content(url) | |
| # Handle errors | |
| if "Error" in content: | |
| return {"Validation Error": content} | |
| domain_trust = self.get_domain_trust(url, content) | |
| similarity_score = self.compute_similarity_score(user_query, content) | |
| fact_check_score = self.check_facts(content) | |
| bias_score = self.detect_bias(content) | |
| final_score = ( | |
| (0.3 * domain_trust) + | |
| (0.3 * similarity_score) + | |
| (0.2 * fact_check_score) + | |
| (0.2 * bias_score) | |
| ) | |
| stars, icon = self.get_star_rating(final_score) | |
| explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, final_score) | |
| return { | |
| "raw_score": { | |
| "Domain Trust": domain_trust, | |
| "Content Relevance": similarity_score, | |
| "Fact-Check Score": fact_check_score, | |
| "Bias Score": bias_score, | |
| "Final Validity Score": final_score | |
| }, | |
| "stars": { | |
| "icon": icon | |
| }, | |
| "explanation": explanation | |
| } | |