Spaces:
Runtime error
Runtime error
Upload rag_with_mircosoftphi2_and_hf_embeddings.py
Browse files
rag_with_mircosoftphi2_and_hf_embeddings.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""RAG_with_MircosoftPhi2_and_HF_Embeddings.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/github/sumant1122/RAG-Phi2-LlamaIndex/blob/main/RAG_with_MircosoftPhi2_and_HF_Embeddings.ipynb
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install -q pypdf
|
| 11 |
+
!pip install -q python-dotenv
|
| 12 |
+
!pip install -q llama-index
|
| 13 |
+
!pip install -q llama-index-llms-huggingface
|
| 14 |
+
!pip install -q llama-index-embeddings-huggingface
|
| 15 |
+
!pip install -q gradio
|
| 16 |
+
!pip install einops
|
| 17 |
+
!pip install accelerate
|
| 18 |
+
!pip install -q llama-cpp-python
|
| 19 |
+
|
| 20 |
+
!pip install llama-index-llms-llama-cpp llama-index-embeddings-huggingface
|
| 21 |
+
|
| 22 |
+
from llama_index.core import VectorStoreIndex,SimpleDirectoryReader,ServiceContext
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
documents = SimpleDirectoryReader("/content/rag").load_data()
|
| 26 |
+
|
| 27 |
+
"""New sectiond"""
|
| 28 |
+
|
| 29 |
+
from llama_index.core.prompts.prompts import SimpleInputPrompt
|
| 30 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
| 31 |
+
|
| 32 |
+
system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."
|
| 33 |
+
|
| 34 |
+
# This will wrap the default prompts that are internal to llama-index
|
| 35 |
+
query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
|
| 36 |
+
|
| 37 |
+
# model_url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/resolve/main/llama-2-13b-chat.ggmlv3.q4_0.bin"
|
| 38 |
+
model_url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q4_0.gguf"
|
| 39 |
+
|
| 40 |
+
llm = LlamaCPP(
|
| 41 |
+
# You can pass in the URL to a GGML model to download it automatically
|
| 42 |
+
model_url=model_url,
|
| 43 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
| 44 |
+
model_path=None,
|
| 45 |
+
temperature=0.1,
|
| 46 |
+
max_new_tokens=256,
|
| 47 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
| 48 |
+
context_window=3900,
|
| 49 |
+
# kwargs to pass to __call__()
|
| 50 |
+
generate_kwargs={},
|
| 51 |
+
# kwargs to pass to __init__()
|
| 52 |
+
# set to at least 1 to use GPU
|
| 53 |
+
model_kwargs={"n_gpu_layers": 1},
|
| 54 |
+
verbose=True,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
"""HuggingFace Embeddings"""
|
| 58 |
+
|
| 59 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 60 |
+
# loads BAAI/bge-small-en-v1.5
|
| 61 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 62 |
+
|
| 63 |
+
service_context = ServiceContext.from_defaults(
|
| 64 |
+
chunk_size=256,
|
| 65 |
+
llm=llm,
|
| 66 |
+
embed_model=embed_model
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
"""predict"""
|
| 70 |
+
|
| 71 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
| 72 |
+
|
| 73 |
+
query_engine = index.as_query_engine()
|
| 74 |
+
|
| 75 |
+
def predict(input, history):
|
| 76 |
+
response = query_engine.query(input)
|
| 77 |
+
return str(response)
|
| 78 |
+
|
| 79 |
+
"""Gradio"""
|
| 80 |
+
|
| 81 |
+
import gradio as gr
|
| 82 |
+
|
| 83 |
+
gr.ChatInterface(predict).launch(share=True)
|