File size: 79,143 Bytes
deea2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
2ff1f39
 
2a35461
2ff1f39
 
2a35461
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deea2d1
 
 
 
 
 
 
2ff1f39
2a35461
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
 
 
 
 
deea2d1
 
 
 
 
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deea2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deea2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff1f39
 
 
 
deea2d1
2ff1f39
 
 
 
 
 
 
 
23c66c9
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
23c66c9
2a35461
23c66c9
2a35461
23c66c9
2a35461
23c66c9
2a35461
23c66c9
 
 
 
 
2a35461
23c66c9
2a35461
 
 
 
 
 
2ff1f39
2a35461
2ff1f39
 
 
 
 
 
 
 
 
2a35461
deea2d1
 
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff1f39
 
2a35461
 
 
2ff1f39
2a35461
 
 
 
 
 
 
deea2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a35461
 
2ff1f39
2a35461
23c66c9
2a35461
23c66c9
 
deea2d1
2a35461
2ff1f39
2a35461
2ff1f39
2a35461
 
 
 
 
 
 
 
2ff1f39
 
2a35461
 
deea2d1
2ff1f39
2a35461
 
2ff1f39
 
2a35461
2ff1f39
 
2a35461
deea2d1
2a35461
 
 
 
 
 
 
 
 
 
2ff1f39
 
 
 
2a35461
 
 
 
deea2d1
2a35461
2ff1f39
 
 
2a35461
2ff1f39
 
2a35461
 
 
23c66c9
2a35461
23c66c9
 
2a35461
 
23c66c9
2a35461
23c66c9
 
 
 
deea2d1
2ff1f39
 
2a35461
 
2ff1f39
2a35461
 
2ff1f39
 
2a35461
2ff1f39
 
 
2a35461
 
 
2ff1f39
 
 
2a35461
2ff1f39
 
 
 
 
 
 
 
 
 
2a35461
 
 
2ff1f39
 
 
 
 
23c66c9
 
 
 
 
 
2a35461
2ff1f39
23c66c9
 
 
 
 
 
 
 
2ff1f39
23c66c9
 
2a35461
 
 
deea2d1
2a35461
 
23c66c9
 
 
 
 
 
 
 
 
2a35461
23c66c9
2a35461
 
 
 
23c66c9
2a35461
2ff1f39
23c66c9
 
 
 
 
 
deea2d1
2a35461
 
23c66c9
 
 
 
 
 
 
 
 
2a35461
23c66c9
 
 
2a35461
23c66c9
 
2a35461
23c66c9
 
2a35461
23c66c9
 
2a35461
23c66c9
 
 
2a35461
23c66c9
 
deea2d1
 
 
23c66c9
 
deea2d1
23c66c9
 
deea2d1
23c66c9
2ff1f39
 
 
 
2a35461
 
 
deea2d1
2a35461
 
 
2ff1f39
2a35461
2ff1f39
 
2a35461
 
 
 
 
 
 
 
 
 
2ff1f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
"""
ghostprint_armor.py  —  Production-grade Invisible Armor generator & applier.

This module creates *band-limited, phase-random* luminance fields designed to
poison ML/vision models while remaining imperceptible to humans when applied
with perceptual masking. It also supports creating "pure armor" layers (no base
image), exporting them, and applying them later to arbitrary assets.

Key ideas:
- Push power into the mid band (normalized radius ~0.10–0.40) so models chase
  lattice/texture chaos instead of semantics. Optionally sprinkle a small
  high-band bump (0.45–0.60) to reach ~10–15% high-band energy.
- Keep human-visible deltas small (SSIM constraints) and hide them in edges /
  high-contrast regions (JND-ish masking).
- Survive common transforms via an EOT loop.

Dependencies (install as needed):
  numpy, pillow, scipy, scikit-image, (optional) opencv-python-headless

Typical usage:
    from ghostprint_armor import (
        ArmorConfig, PureArmorSpec, ArmorGenerator, apply_delta_autosize
    )

    # 1) Generate a pure armor layer (no image needed)
    gen = ArmorGenerator()
    delta, meta = gen.generate_pure_armor(PureArmorSpec(width=1536, height=1024, seed=12345))

    # 2) Export visual layers (alpha-only, signed-delta PNG, spectrum panel)
    gen.export_armor_layers(delta, meta.amp, out_dir="/tmp/armor", tag="armor_v1")

    # 3) Apply the delta onto any image (auto resizes in Fourier domain)
    apply_delta_autosize("/tmp/input.jpg", "/tmp/armor/armor_v1_delta_signed.png",
                         amp=meta.amp, out_path="/tmp/input_armored.jpg")

    # 4) Analyze the output spectrum/toxicity
    from ghostprint_armor import analyze_image_bands
    bands, tox = analyze_image_bands("/tmp/input_armored.jpg")

Copyright:
  Use at your own risk. This is not cryptography.
"""

from __future__ import annotations

import dataclasses
import hashlib
import hmac
import io
import json
import math
import os
from dataclasses import dataclass
from typing import Dict, Iterable, List, Optional, Tuple

import numpy as np
from PIL import Image

# Optional deps (OpenCV is optional - Pillow fallback is fully functional)
try:
    import cv2  # type: ignore
    CV2_AVAILABLE = True
except Exception:  # pragma: no cover
    cv2 = None
    CV2_AVAILABLE = False

from scipy.fft import fft2, ifft2, fftshift, ifftshift
from scipy.ndimage import gaussian_filter, sobel, uniform_filter

try:
    from skimage.metrics import structural_similarity as ssim  # type: ignore
except Exception as e:  # pragma: no cover
    raise ImportError("scikit-image is required: pip install scikit-image") from e

# --------------------------- Chimera Engine Integration ---------------------------
import cmath
import scipy.special as sp
from scipy.ndimage import zoom

class ChimeraEngine:
    """
    The core Chimera Engine class, upgraded with advanced logic from the reference codex.
    Version: 2.2 (HVS-Permanent Configuration)
    """
    def __init__(self, power: float = 5.0, focus_parameter: float = 3.5,
                 frequency_strategy: str = 'auto',
                 c1: complex = 0.587+1.223j, c2: complex = -0.994+0.000j):
        """
        Initializes the Chimera Engine. HVS Stealth Mode is now permanently enabled.
        - power: Base strength of the armor field.
        - focus_parameter: Sharpness of the vulnerability map. Higher values mean more focused attacks.
        - frequency_strategy: 'auto', 'low', 'high', 'hybrid', 'scramble'.
        """
        self.power = power
        self.focus_parameter = focus_parameter
        self.frequency_strategy = frequency_strategy
        self.c1 = c1
        self.c2 = c2
        self.low_freq_set = [3, 5, 8, 13]
        self.high_freq_set = [15, 31, 47, 61]
        self.hybrid_freq_set = [5, 8, 31, 47]

    def _generate_holographic_map(self, image_gray: np.ndarray) -> tuple[np.ndarray, float]:
        """Step 1: Holographic Reconnaissance with adaptive blurring. Now uses Pillow for resizing."""
        h, w = image_gray.shape
        low_res_h, low_res_w = h // 16, w // 16
        
        # Use Pillow for resizing to remove OpenCV dependency
        img = Image.fromarray(image_gray.astype(np.uint8))
        img_resized = img.resize((low_res_w, low_res_h), Image.Resampling.LANCZOS)
        signal = np.asarray(img_resized).flatten()

        N = len(signal)
        encoded_view = [((s / 255.0) * cmath.exp(1j * 2 * np.pi * (k / N))) for k, s in enumerate(signal)]

        holographic_points = []
        for z in encoded_view:
            try:
                F_z = sp.gamma(z)
                if not np.isfinite(F_z): F_z = 1e-12 + 1e-12j
            except Exception:
                F_z = 1e-12 + 1e-12j
            phi_z = self.c1 * F_z + self.c2 * abs(z)
            holographic_points.append(phi_z)

        magnitudes = np.abs(holographic_points)
        mean_complexity = np.mean(magnitudes)
        complexity_grid = np.reshape(magnitudes, (low_res_h, low_res_w))
        full_res_map = zoom(complexity_grid, (h / low_res_h, w / low_res_w), order=3)
        
        # Adaptive blurring: Sharper focus leads to less blur, creating a more detailed map.
        blur_sigma = max(2.0, 12.0 - self.focus_parameter * 2.5)
        smoothed_map = gaussian_filter(full_res_map, sigma=blur_sigma)

        inverted_map = np.max(smoothed_map) - smoothed_map
        max_inv = np.max(inverted_map)
        if max_inv > 1e-9:
            normalized_map = (inverted_map - np.min(inverted_map)) / max_inv
        else:
            normalized_map = np.zeros_like(inverted_map)
        focused_map = normalized_map ** self.focus_parameter
        return focused_map, mean_complexity

    def _synthesize_adaptive_armor(self, h: int, w: int, seed_bytes: bytes,
                                   complexity_map: np.ndarray, mean_complexity: float,
                                   original_gray_data: np.ndarray) -> np.ndarray:
        """Step 2: Adaptive Armor Synthesis with advanced frequency strategies."""
        y, x = np.mgrid[0:h, 0:w]
        seed = int(hashlib.sha256(seed_bytes).hexdigest()[:16], 16)
        
        # --- Advanced Frequency Strategy Selection ---
        scramble_phases = False
        if self.frequency_strategy == 'low':
            freqs = self.low_freq_set
        elif self.frequency_strategy == 'high':
            freqs = self.high_freq_set
        elif self.frequency_strategy == 'hybrid':
            freqs = self.hybrid_freq_set
        elif self.frequency_strategy == 'scramble':
            freqs = self.high_freq_set if mean_complexity < 0.8 else self.low_freq_set
            scramble_phases = True
        else: # 'auto'
            freqs = self.high_freq_set if mean_complexity < 0.8 else self.low_freq_set
        
        print(f"INFO: Complexity={mean_complexity:.2f}. Using '{self.frequency_strategy}' strategy with {freqs} freqs.")

        weights = [0.2, 0.45, 0.25, 0.10]
        base_armor_field = np.zeros((h, w), dtype=np.float32)
        rng = np.random.default_rng(seed)

        for k, fk in enumerate(freqs):
            if scramble_phases:
                phi, psi = rng.uniform(0, 2 * np.pi, 2)
            else:
                frac = (seed % 1000) / 1000
                phi, psi = np.pi * frac * (k + 1), np.pi * (1 - frac) * (k + 1)
            
            csf_f = 2.6 * (0.0192 + 0.114 * fk) * np.exp(-(0.114 * fk)**1.1)
            freq_potency = 1.5 if freqs == self.high_freq_set else 1.0
            A = freq_potency * min(2.0, 0.35 / (csf_f + 1e-6) * (1 / np.sqrt(fk)))
            component = A * np.sin(2 * np.pi * fk * x / w + phi) * np.cos(2 * np.pi * fk * y / h + psi)
            base_armor_field += weights[k] * component

        # Widen dynamic range and make power more impactful
        squashed_field = np.tanh(0.6 * base_armor_field) * 0.6
        adaptive_strength_modulator = (complexity_map * 2.5) + 0.15
        armor_delta = squashed_field * self.power * adaptive_strength_modulator

        # --- HVS Stealth Modulation Logic (Now Permanent) ---
        # Armor is clamped based on local intensity to remain below perceptual threshold
        print("INFO: Applying permanent Human Visual System (HVS) stealth modulation.")
        jnd_threshold = np.maximum(2.0, 0.02 * original_gray_data)
        raw_armor_mag = np.abs(armor_delta)
        
        # More powerful logarithmic compression of armor values exceeding the JND threshold.
        # This makes the armor significantly less perceptible to the human eye.
        excess_magnitude = raw_armor_mag - jnd_threshold
        # The divisor here acts as a compression strength control. A higher value means stronger compression.
        # We increase it from 1.0 (implicit) to 2.5 for a much more powerful stealth effect.
        compressed_excess = np.log1p(np.maximum(0, excess_magnitude)) / 2.5
        new_magnitude = jnd_threshold + compressed_excess
        
        # Reapply sign and clamp
        perceptual_armor = np.sign(armor_delta) * new_magnitude
        return np.clip(np.round(perceptual_armor), -255, 255).astype(np.float32)

    def run_pipeline_and_verify(self, image_path: str) -> dict:
        """Executes the full pipeline and returns metrics for verification."""
        img = cv2.imread(image_path)
        if img is None:
            raise FileNotFoundError(f"Could not read image at path: {image_path}")
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
        h, w, _ = img_rgb.shape
        with open(image_path, 'rb') as f:
            seed_bytes = f.read()

        # Step 1: Reconnaissance
        complexity_map_before, mean_complexity = self._generate_holographic_map(img_gray)
        
        # Step 2: Synthesis
        adaptive_armor = self._synthesize_adaptive_armor(
            h, w, seed_bytes, complexity_map_before, mean_complexity, img_gray
        )
        
        # Apply armor
        protected_image_rgb = np.clip(
            img_rgb.astype(np.float32) + adaptive_armor[:, :, None], 0, 255
        ).astype(np.uint8)
        
        # Step 3: Verification
        protected_gray = cv2.cvtColor(protected_image_rgb, cv2.COLOR_RGB2GRAY)
        complexity_map_after, _ = self._generate_holographic_map(protected_gray)
        holographic_distance = np.linalg.norm(complexity_map_before - complexity_map_after)
        signature_obfuscation = np.std(complexity_map_after)

        return {
            "Protected Image": protected_image_rgb,
            "Adaptive Armor": adaptive_armor,
            "Holographic Distance": holographic_distance,
            "Signature Obfuscation": signature_obfuscation
        }

# Chimera Engine loaded - suppress startup message unless debugging
import os
if os.environ.get('GHOSTPRINT_DEBUG', '').lower() == 'true':
    print("✅ Chimera Engine class loaded successfully.")


# --------------------------- Configuration dataclasses ---------------------------

@dataclass
class Ring:
    """Normalized frequency ring (relative to half-diagonal of the image)."""
    r1: float = 0.12   # inner radius  in [0, 1]
    r2: float = 0.35   # outer radius  in [0, 1]
    weight: float = 1.0 # weight for this ring

    def clamp(self) -> "Ring":
        r1 = float(np.clip(self.r1, 0.0, 1.0))
        r2 = float(np.clip(self.r2, 0.0, 1.0))
        if r2 < r1:  # swap if needed
            r1, r2 = r2, r1
        return Ring(r1, r2, self.weight)


@dataclass
class ArmorConfig:
    """
    Controls amplitude, ring selection, perceptual masking, determinism, and EOT.

    amp:         Luminance delta cap in [0..255] (applied after masking).
    rings:       A list of Rings to compose for the armor field.
    mix_edges:   0..1 → weight for edge vs. JND masks (1.0 = only edges).
    secret:      HMAC secret for deterministic per-asset seeds.
    seed:        Optional explicit seed (int). If None, code derives it.
    eot_iters:   Max EOT iterations (robustness tightening).
    ssim_floor:  Minimum allowed SSIM vs. original when applying armor.
    tox_goal:    Target toxicity after transforms (≥ this to stop EOT).
    amp_step:    Amplitude increment during EOT.
    max_amp:     Upper bound on amplitude during EOT.
    band_targets: Optional[Dict[str, float]] = None # e.g. {"low": 0.20, "mid": 0.45, "high": 0.25}
    
    SKIL Defense (Stochastic Key-In-the-Loop Manifold):
    server_secret:     Optional cryptographic secret for stochastic layer. Reads from 
                       GHOSTPRINT_SERVER_SECRET env var if None and enable_stochastic=True.
    enable_stochastic: Enable/disable the SKIL defense layer.
    stochastic_alpha:  Weight for deterministic armor component (default 0.7).
    stochastic_beta:   Weight for stochastic mask component (default 0.3).
    """
    amp: float = 30.0 # Reduced base for gentler starting point
    rings: List[Ring] = dataclasses.field(default_factory=lambda: [
        Ring(r1=0.10, r2=0.40, weight=1.0),  # Primary mid-band (exact definition)
        Ring(r1=0.15, r2=0.35, weight=0.8),  # Secondary mid-band (concentrated)
        Ring(r1=0.20, r2=0.30, weight=0.6),  # Tertiary mid-band (core)
    ])
    mix_edges: float = 0.3  # Reduced to preserve more armor structure
    secret: bytes = b"ghostprint-secret"
    seed: Optional[int] = None

    # EOT (Expectation over Transform) robustness
    eot_iters: int = 500  # More iterations to find optimal mid-band
    ssim_floor: float = 0.85  # More lenient for mid-band preservation
    tox_goal: float = 0.40  # Lower toxicity goal, focus on mid-band
    amp_step: float = 1.0  # Smaller steps for finer control (was 2.0)
    max_amp: float = 80.0  # Reduced ceiling to prevent overshooting (was 100.0)
    # CRITICAL: Mid-band (0.10-0.40 normalized radius) gets 90% of energy for ML disruption
    band_targets: Optional[Dict[str, float]] = dataclasses.field(
        default_factory=lambda: {"low": 0.05, "mid": 0.90, "high": 0.05}
    )
    
    # SKIL Defense - Adds difficulty to autoencoder-based removal attacks
    # Note: Effective when attackers lack paired clean/armored training data
    # With sufficient paired data, autoencoders can still learn removal patterns
    server_secret: Optional[bytes] = None
    enable_stochastic: bool = False  # Add this line
    stochastic_alpha: float = 0.85  # Deterministic component (85%) - primary protection
    stochastic_beta: float = 0.15   # Stochastic component (15%)


@dataclass
class PureArmorSpec:
    """Spec for generating a pure armor field (no base image)."""
    width: int
    height: int
    seed: int = 42  # deterministic by default
    config: ArmorConfig = dataclasses.field(default_factory=ArmorConfig)


@dataclass
class ArmorMeta:
    """Metadata describing a generated armor field."""
    amp: float
    rings: List[Ring]
    seed: int
    bands: Dict[str, float]
    toxicity: float
    ssim: Optional[float] = None


# --------------------------- Low-level math utilities ---------------------------

def _hann2d(h: int, w: int) -> np.ndarray:
    """2D Hann window to reduce spectral leakage before FFT."""
    wy = np.hanning(h)
    wx = np.hanning(w)
    return np.outer(wy, wx).astype(np.float32)


def _ring_mask(shape: Tuple[int, int], r1: float, r2: float) -> np.ndarray:
    """Boolean mask selecting a normalized frequency ring in the FFT plane."""
    h, w = shape
    cy, cx = h // 2, w // 2
    yy, xx = np.ogrid[:h, :w]
    dist = np.sqrt((yy - cy) ** 2 + (xx - cx) ** 2)
    maxr = np.sqrt((h / 2) ** 2 + (w / 2) ** 2)
    R = dist / maxr
    return (R >= r1) & (R <= r2)


def _fft_power(gray: np.ndarray, window: bool = True) -> np.ndarray:
    """Return power spectrum |FFT|^2 of a grayscale image/field."""
    g = gray.astype(np.float32, copy=False)
    if window:
        g = g * _hann2d(*g.shape)
    F = fftshift(fft2(g))
    return (np.abs(F) ** 2).astype(np.float64)


def _band_energies(power: np.ndarray) -> Dict[str, float]:
    """
    Compute energy ratios in low/mid/high bands:
    low:  0.00–0.10, mid: 0.10–0.40, high: 0.40–1.00 (radius normalized).
    """
    total = float(power.sum() + 1e-12)
    low = float(power[_ring_mask(power.shape, 0.00, 0.10)].sum() / total)
    mid = float(power[_ring_mask(power.shape, 0.10, 0.40)].sum() / total)
    high = float(power[_ring_mask(power.shape, 0.40, 1.00)].sum() / total)
    return {"low": low, "mid": mid, "high": high}


def _toxicity(power: np.ndarray) -> float:
    """Energy outside the low-frequency core (radius < 0.10)."""
    total = float(power.sum() + 1e-12)
    core = float(power[_ring_mask(power.shape, 0.00, 0.10)].sum())
    return float(1.0 - core / total)


def _cmt_multi_lens_displacement_field(shape: Tuple[int, int], seed: int, 
                                       c1: complex = 0.587+1.223j, 
                                       c2: float = -0.994) -> Tuple[np.ndarray, np.ndarray]:
    """
    Generate CMT multi-lens displacement fields that create mid-frequency patterns.
    Returns (delta_x, delta_y) displacement fields.
    """
    h, w = shape
    rng = np.random.default_rng(int(seed))
    
    # Create normalized complex coordinate grid
    x = np.linspace(-1, 1, w, dtype=np.float32)
    y = np.linspace(-1, 1, h, dtype=np.float32)
    xx, yy = np.meshgrid(x, y)
    Z = xx + 1j * yy
    
    # Import all lens functions
    from scipy.special import gamma, airy, j0
    
    # Initialize aggregate displacement fields
    delta_x_total = np.zeros(shape, dtype=np.float32)
    delta_y_total = np.zeros(shape, dtype=np.float32)
    
    # Lens 1: Gamma function (creates fractal-like patterns)
    try:
        # Scale Z to avoid overflow in gamma
        Z_gamma = Z * (0.5 + rng.random() * 0.3)
        F_gamma = gamma(Z_gamma + 1.5)  # Shift to avoid singularity at 0
        # Handle any infinities
        F_gamma = np.where(np.isfinite(F_gamma), F_gamma, 0)
        
        # Apply CMT transform
        Phi_gamma = c1 * F_gamma + c2 * np.abs(Z)
        delta_x_total += np.real(Phi_gamma)
        delta_y_total += np.imag(Phi_gamma)
    except:
        pass
    
    # Lens 2: Airy function (creates wave interference patterns)
    try:
        Z_airy = Z * (3.0 + rng.random() * 2.0)  # Scale for mid frequencies
        F_airy = airy(Z_airy)[0]
        F_airy = np.where(np.isfinite(F_airy), F_airy, 0)
        
        Phi_airy = c1 * F_airy + c2 * np.abs(Z)
        delta_x_total += np.real(Phi_airy)
        delta_y_total += np.imag(Phi_airy)
    except:
        pass
    
    # Lens 3: Bessel function (creates radial patterns)
    try:
        Z_bessel = np.abs(Z) * (5.0 + rng.random() * 3.0)  # Use magnitude for Bessel
        F_bessel = j0(Z_bessel)
        # Add phase based on angle
        angle = np.angle(Z)
        F_bessel_complex = F_bessel * np.exp(1j * angle)
        
        Phi_bessel = c1 * F_bessel_complex + c2 * np.abs(Z)
        delta_x_total += np.real(Phi_bessel)
        delta_y_total += np.imag(Phi_bessel)
    except:
        pass
    
    # Lens 4: Sinc function (creates diffraction patterns)
    try:
        Z_sinc = Z * (10.0 + rng.random() * 5.0)
        # Sinc creates strong mid-frequency content
        F_sinc = np.sinc(np.real(Z_sinc)) + 1j * np.sinc(np.imag(Z_sinc))
        
        Phi_sinc = c1 * F_sinc + c2 * np.abs(Z)
        delta_x_total += np.real(Phi_sinc)
        delta_y_total += np.imag(Phi_sinc)
    except:
        pass
    
    # Normalize to sub-pixel range (0.5 pixels max displacement)
    lambda_scale = 0.5  # Maximum displacement in pixels
    
    max_dx = np.max(np.abs(delta_x_total))
    max_dy = np.max(np.abs(delta_y_total))
    
    if max_dx > 1e-6:
        delta_x_total = lambda_scale * delta_x_total / max_dx
    if max_dy > 1e-6:
        delta_y_total = lambda_scale * delta_y_total / max_dy
    
    return delta_x_total, delta_y_total


def _apply_cmt_displacement(field: np.ndarray, delta_x: np.ndarray, delta_y: np.ndarray) -> np.ndarray:
    """
    Apply CMT displacement field to create mid-frequency perturbations.
    Sub-pixel displacements naturally create mid-frequency content.
    """
    h, w = field.shape
    
    # Create coordinate grids
    y_coords, x_coords = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
    
    # Apply displacements
    x_displaced = x_coords + delta_x
    y_displaced = y_coords + delta_y
    
    # Ensure coordinates stay within bounds
    x_displaced = np.clip(x_displaced, 0, w - 1)
    y_displaced = np.clip(y_displaced, 0, h - 1)
    
    # Use bilinear interpolation for sub-pixel accuracy
    from scipy.ndimage import map_coordinates
    
    # Reshape for map_coordinates
    coords = np.array([y_displaced.ravel(), x_displaced.ravel()])
    
    # Apply displacement with bilinear interpolation
    displaced_field = map_coordinates(field, coords, order=1, mode='reflect')
    displaced_field = displaced_field.reshape(h, w)
    
    return displaced_field.astype(np.float32)


def _cmt_lens_field(shape: Tuple[int, int], seed: int) -> np.ndarray:
    """
    Enhanced CMT lens field using multi-lens displacement for maximum mid-frequency chaos.
    """
    h, w = shape
    rng = np.random.default_rng(int(seed))
    
    # Generate CMT displacement fields
    delta_x, delta_y = _cmt_multi_lens_displacement_field(shape, seed)
    
    # Create base pattern to be displaced
    # Use a combination of patterns that will create mid frequencies when displaced
    x = np.linspace(0, 4*np.pi, w)
    y = np.linspace(0, 4*np.pi, h)
    xx, yy = np.meshgrid(x, y)
    
    # Base pattern with multiple frequencies
    base_pattern = (
        np.sin(3 * xx) * np.cos(3 * yy) +  # Low-mid frequency
        0.5 * np.sin(7 * xx) * np.cos(7 * yy) +  # Mid frequency
        0.3 * np.sin(15 * xx) * np.cos(15 * yy) +  # High-mid frequency
        0.2 * np.sin(30 * xx) * np.cos(30 * yy)   # Very high frequency
    )
    
    # Apply CMT displacement to create additional mid frequencies
    displaced_pattern = _apply_cmt_displacement(base_pattern, delta_x * 10, delta_y * 10)
    
    # Add LEHI harmonic perturbation
    # Frequencies chosen for mid-band: {3, 7, 15, 30} cycles per image
    lehi_freqs = [3, 7, 15, 30]
    lehi_pattern = np.zeros_like(base_pattern)
    
    for k, freq in enumerate(lehi_freqs):
        # Deterministic phases seeded from input
        phi_k = rng.random() * 2 * np.pi
        psi_k = rng.random() * 2 * np.pi
        
        # Amplitude scaling with CSF
        csf = 2.6 * (0.0192 + 0.114 * freq) * np.exp(-(0.114 * freq) ** 1.1)
        A_k = min(0.5, 0.1 / csf)  # Scale by CSF
        
        # Add harmonic
        lehi_pattern += A_k * np.sin(2*np.pi * freq * xx/(4*np.pi) + phi_k) * np.cos(2*np.pi * freq * yy/(4*np.pi) + psi_k)
    
    # Combine all components
    combined_field = (
        0.4 * displaced_pattern +  # CMT displaced patterns
        0.3 * lehi_pattern +       # LEHI harmonics
        0.3 * (delta_x + delta_y)  # Direct displacement field contribution
    )
    
    # Apply nonlinear transformation to enhance mid frequencies
    combined_field = np.tanh(combined_field * 0.5) * 4.0
    
    return combined_field.astype(np.float32)


def _cmt_filtered_field(shape: Tuple[int, int], seed: int, ring: Ring) -> np.ndarray:
    """
    Generates a CMT lens field with aggressive mid-band filtering.
    Multiple passes ensure maximum energy concentration in target frequencies.
    """
    # 1. Generate the base chaotic field from CMT lenses
    chaotic_field = _cmt_lens_field(shape, seed)
    
    # 2. Apply multiple filtering passes to concentrate energy in mid-band
    field = chaotic_field.copy()
    
    for pass_num in range(3):  # Multiple passes to build up mid-band energy
        # Transform to frequency domain
        F = fftshift(fft2(field))
        
        # Create ring mask
        mask = _ring_mask(shape, ring.r1, ring.r2).astype(np.float32)
        
        # Apply progressively stronger filtering
        if pass_num == 0:
            # First pass: gentle filtering to preserve some structure
            F_filtered = F * mask
        elif pass_num == 1:
            # Second pass: boost mid frequencies
            mid_boost = 1.0 + mask * 2.0  # Amplify mid-band by 3x
            F_filtered = F * mid_boost
        else:
            # Final pass: aggressive mid-band isolation
            # Suppress everything outside mid-band
            F_filtered = F * mask
            # Extra boost to mid frequencies
            F_filtered *= 2.5
        
        # Back to spatial domain
        field = np.real(ifft2(ifftshift(F_filtered))).astype(np.float32)
        
        # Add some of the original chaos back to maintain complexity
        if pass_num < 2:
            field = 0.7 * field + 0.3 * chaotic_field
    
    # 3. Final normalization with preserved variance
    field -= field.mean()
    
    # Ensure strong signal (don't over-normalize)
    target_std = 2.0  # Higher standard deviation for more aggressive perturbation
    current_std = field.std()
    if current_std > 1e-6:
        field *= (target_std / current_std)
    
    return field.astype(np.float32)


def _generate_stochastic_mask(
    shape: Tuple[int, int],
    image_bytes: bytes,
    server_secret: bytes,
    base_seed: int
) -> np.ndarray:
    """
    Generate a cryptographically-keyed stochastic mask for SKIL defense.
    
    This creates a band-limited noise field that is unpredictable without the
    server secret, making it impossible for LightShed-style autoencoders to learn
    the complete perturbation pattern.
    
    Args:
        shape: (height, width) of the output mask
        image_bytes: Raw bytes of the image file (for unique per-image keying)
        server_secret: Server-side cryptographic secret (512 bits recommended)
        base_seed: Base seed from deterministic armor generation
    
    Returns:
        Band-limited stochastic field (float32) with mid-band energy concentration
    
    Security Properties:
        - Non-reproducible without server_secret (512 bits entropy)
        - Unique per-image (incorporates image_bytes)
        - Mid-band frequency profile (0.10-0.40 normalized radius)
        - Cryptographically secure derivation (SHA-256)
    """
    h, w = shape
    
    # Cryptographic seed derivation: combines image data, server secret, and base seed
    # This ensures each image gets a unique, unpredictable stochastic component
    seed_material = image_bytes + server_secret + base_seed.to_bytes(8, 'big')
    stochastic_seed_hash = hashlib.sha256(seed_material).digest()
    
    # Convert hash to integer seed for RNG
    stochastic_seed = int.from_bytes(stochastic_seed_hash[:8], 'big', signed=False)
    rng = np.random.default_rng(stochastic_seed)
    
    # Generate multi-frequency structured noise (not simple white noise)
    # This maintains imperceptibility while adding mid-band chaos
    x = np.linspace(0, 20*np.pi, w)
    y = np.linspace(0, 20*np.pi, h)
    xx, yy = np.meshgrid(x, y)
    
    # Create base pattern with multiple frequency components
    # These frequencies are chosen to populate the mid-band (0.10-0.40 normalized radius)
    structured_noise = (
        rng.normal(0, 0.5, size=shape) +  # Random component
        0.3 * np.sin(5 * xx + rng.random() * 2*np.pi) * np.cos(5 * yy + rng.random() * 2*np.pi) +
        0.2 * np.sin(8 * xx + rng.random() * 2*np.pi) * np.cos(8 * yy + rng.random() * 2*np.pi) +
        0.2 * np.sin(12 * xx + rng.random() * 2*np.pi) * np.cos(12 * yy + rng.random() * 2*np.pi) +
        0.1 * np.sin(15 * xx + rng.random() * 2*np.pi) * np.cos(15 * yy + rng.random() * 2*np.pi)
    ).astype(np.float32)
    
    # Apply band-pass filter to concentrate energy in mid-band (0.10-0.40)
    # This ensures the stochastic component matches the deterministic armor's frequency profile
    F = fftshift(fft2(structured_noise))
    mid_band_mask = _ring_mask(shape, 0.10, 0.40).astype(np.float32)
    
    # Apply mask and boost to ensure strong mid-band presence
    F_filtered = F * mid_band_mask * 2.0
    
    # Back to spatial domain
    stochastic_field = np.real(ifft2(ifftshift(F_filtered))).astype(np.float32)
    
    # Normalize: zero mean, controlled variance
    stochastic_field -= stochastic_field.mean()
    current_std = stochastic_field.std()
    if current_std > 1e-6:
        # Target std slightly lower than deterministic armor (we'll scale by beta later)
        target_std = 1.5
        stochastic_field *= (target_std / current_std)
    
    return stochastic_field


def _phi_en_symbol_mask(h: int, w: int, strength: float = 1.0, seed: Optional[int] = None) -> np.ndarray:
    """
    Generates the "Better Armor" perturbation field based on a combination of
    five structured masks.
    """
    rng = np.random.default_rng(seed)
    y, x = np.mgrid[0:h, 0:w]
    phi = (1 + np.sqrt(5)) / 2

    # 1. Golden Ratio Lattice Mask
    G = sum(np.sin(2 * np.pi * (x / phi) / (20 + i * 5) + rng.random() * 2 * np.pi) +
            np.cos(2 * np.pi * (y * phi) / (20 + i * 5) + rng.random() * 2 * np.pi)
            for i in range(3))

    # 2. Fibonacci Phase Harmonics
    fibs = [1, 2, 3, 5, 8]
    F = sum(0.2 / (k + 1) * (np.sin(f * x / w + rng.random() * 2 * np.pi) +
                            np.cos(f * y / h + rng.random() * 2 * np.pi))
            for k, f in enumerate(fibs))

    # 3. Prime Harmonic Grid
    primes = [5, 7, 11, 13]
    P = sum(0.15 / (i + 1) * (np.sin(p * x / w + rng.random() * 2 * np.pi) +
                             np.cos(p * y / h + rng.random() * 2 * np.pi))
            for i, p in enumerate(primes))

    # 4. Irrational Chaos Mask
    irr = [(np.pi + i * np.e, np.e + i * np.pi) for i in range(4)]
    Q = sum(np.sin(ix * x / w + rng.random() * 2 * np.pi) +
            np.cos(iy * y / h + rng.random() * 2 * np.pi)
            for ix, iy in irr)

    # 5. Homoglyph Phase-Swap Perturbation
    swaps = [30, 50]
    H = sum(np.sin((x + y) / (h + w) * s + rng.random() * 2 * np.pi)
            for s in swaps)

    # Combined Mask
    M = 0.25 * G + 0.25 * F + 0.20 * P + 0.20 * Q + 0.10 * H
    
    # Normalization
    M = np.tanh(0.8 * M) * 0.4
    
    # Perturbation Application
    delta = np.clip(np.round(M * strength * 0.6), -2, 2)
    return delta.astype(np.float32)


def _band_limited_field(shape: Tuple[int, int], ring: Ring, seed: int) -> np.ndarray:
    """
    Create a real band-limited field with aggressive mid-band focus.
    Uses structured noise instead of white noise for better mid-band energy.
    """
    ring = ring.clamp()
    rng = np.random.default_rng(int(seed))
    
    # Start with structured noise that has more mid-frequency content
    h, w = shape
    x = np.linspace(0, 20*np.pi, w)
    y = np.linspace(0, 20*np.pi, h)
    xx, yy = np.meshgrid(x, y)
    
    # Create multi-frequency base pattern
    structured = (
        rng.normal(0, 0.5, size=shape) +  # Random component
        0.3 * np.sin(5 * xx) * np.cos(5 * yy) +  # Mid-frequency waves
        0.2 * np.sin(8 * xx + rng.random() * 2*np.pi) +
        0.2 * np.cos(8 * yy + rng.random() * 2*np.pi) +
        0.1 * np.sin(12 * xx) * np.sin(12 * yy)  # Higher frequency
    ).astype(np.float32)
    
    # Apply band-pass filter
    F = fftshift(fft2(structured))
    mask = _ring_mask(shape, ring.r1, ring.r2)
    F_filtered = F * mask
    
    # Boost the filtered frequencies
    F_filtered *= 2.0
    
    field = np.real(ifft2(ifftshift(F_filtered))).astype(np.float32)
    field -= float(field.mean())
    std = float(field.std() + 1e-6)
    if std > 1e-6:
        field *= (1.0 / std)
    return field


def _decode_signed_delta_png(path: str, amp: float) -> np.ndarray:
    """
    Read a signed-delta PNG produced by `export_armor_layers`.
    Decoding: delta = (v/255 - 0.5) * (2*amp)
    """
    enc = np.asarray(Image.open(path).convert("L")).astype(np.float32)
    return ((enc / 255.0) - 0.5) * (2.0 * float(amp))


def _encode_signed_delta_png(delta: np.ndarray, amp: float) -> np.ndarray:
    """
    Encode a signed delta to 8-bit grayscale suitable for PNG.
    Encoding: v = ((clip(delta, -amp, +amp)/(2*amp)) + 0.5) * 255
    """
    enc = ((np.clip(delta, -amp, amp) / (2.0 * float(amp))) + 0.5) * 255.0
    return np.clip(enc, 0, 255).astype(np.uint8)


def _fft_resample_field(field: np.ndarray, new_h: int, new_w: int) -> np.ndarray:
    """
    Frequency-preserving resize of a band-limited field: crop/pad around the FFT center.
    Keeps the ring profile intact, unlike spatial interpolation.
    """
    H, W = field.shape
    F = fftshift(fft2(field))
    out = np.zeros((new_h, new_w), dtype=np.complex64)

    hmin = min(H, new_h)
    wmin = min(W, new_w)

    y0s, y1s = H // 2 - hmin // 2, H // 2 - hmin // 2 + hmin
    x0s, x1s = W // 2 - wmin // 2, W // 2 - wmin // 2 + wmin

    y0d, y1d = new_h // 2 - hmin // 2, new_h // 2 - hmin // 2 + hmin
    x0d, x1d = new_w // 2 - wmin // 2, new_w // 2 - wmin // 2 + wmin

    out[y0d:y1d, x0d:x1d] = F[y0s:y1s, x0s:x1s]
    resized = np.real(ifft2(ifftshift(out))).astype(np.float32)

    # match source variance
    if resized.std() > 1e-6 and field.std() > 1e-6:
        resized *= (float(field.std()) / float(resized.std()))
    return resized


# --------------------------- Perceptual masking ---------------------------

def _jnd_mask(gray: np.ndarray) -> np.ndarray:
    """
    Crude JND-like mask: scale deltas by local contrast (std in a window).
    Returns values ~[0.5, 1.0] to preserve more armor energy.
    """
    mu = uniform_filter(gray, size=7)
    mu2 = uniform_filter(gray ** 2, size=7)
    local_std = np.sqrt(np.maximum(mu2 - mu ** 2, 1e-6))
    m = local_std / (float(local_std.max()) + 1e-6)
    # Increased minimum to preserve more armor structure
    return (0.5 + 0.5 * m).astype(np.float32)


def _edge_mask(gray: np.ndarray) -> np.ndarray:
    """
    Edge emphasis via Sobel gradient magnitude; gamma<1 boosts edges mildly.
    """
    gx, gy = sobel(gray, 1), sobel(gray, 0)
    mag = np.hypot(gx, gy)
    mag /= float(mag.max() + 1e-6)
    return (mag ** 0.7).astype(np.float32)


def _content_amplitude_map(gray: np.ndarray, mix_edges: float) -> np.ndarray:
    """
    Combine edge and JND masks to decide where to hide energy.
    `mix_edges` in [0..1] sets the blend amount.
    """
    me = float(np.clip(mix_edges, 0.0, 1.0))
    m = me * _edge_mask(gray) + (1.0 - me) * _jnd_mask(gray)
    m /= float(m.max() + 1e-6)
    return m.astype(np.float32)


# --------------------------- Public API: generation & export ---------------------------

class ArmorGenerator:
    """
    Factory for creating and exporting Invisible Armor.

    Create once and reuse. All methods are deterministic given seeds.
    """

    VERSION: str = "1.0.0"

    # --- Pure armor (no base image) ---

    def generate_pure_armor(self, spec: PureArmorSpec) -> Tuple[np.ndarray, ArmorMeta]:
        """
        Create a pure armor field from a random seed (no base image).
        Uses aggressive multi-ring CMT generation to force mid-band energy.
        Returns:
            delta: 2D float32 array of signed luminance deltas.
            meta:  ArmorMeta describing amp, bands, toxicity.
        """
        cfg = spec.config
        shape = (spec.height, spec.width)

        # 1. Generate a base chaotic field
        base_field = np.zeros(shape, dtype=np.float32)
        base_seed = spec.seed
        for i, ring in enumerate(cfg.rings):
            ring_seed = base_seed + i * 1000
            ring_field = _cmt_filtered_field(shape, ring_seed, ring.clamp())
            base_field += ring_field * ring.weight

        # --- Better Armor Integration ---
        better_armor_mask = _phi_en_symbol_mask(spec.height, spec.width, strength=float(cfg.amp), seed=spec.seed)
        initial_field = 0.7 * base_field + 0.3 * better_armor_mask * float(cfg.amp)

        # 2. Fourier Domain Energy Balancing
        # CRITICAL: These are RATIOS that must sum to ~1.0
        # Mid-band gets 85%+ of total energy for maximum ML disruption
        band_targets = cfg.band_targets or {"low": 0.05, "mid": 0.90, "high": 0.05}

        F = fftshift(fft2(initial_field))
        mag = np.abs(F)
        phase = np.angle(F)

        # Define band masks
        masks = {
            "low": _ring_mask(shape, 0.00, 0.10),
            "mid": _ring_mask(shape, 0.10, 0.40),
            "high": _ring_mask(shape, 0.40, 1.00),
        }

        # Calculate current energies
        pow2 = mag**2
        total_energy = pow2.sum()
        if total_energy < 1e-9: # Avoid division by zero for blank fields
             total_energy = 1.0

        band_energies = {band: pow2[m].sum() for band, m in masks.items()}

        # Rescale magnitudes
        F_bal = np.zeros_like(F, dtype=complex)
        for band, target_ratio in band_targets.items():
            if band in masks and band_energies[band] > 0:
                mask = masks[band]
                current_energy = band_energies[band]
                target_energy = target_ratio * total_energy
                scale = np.sqrt(target_energy / current_energy)
                F_bal[mask] += F[mask] * scale

        # 3. Inverse FFT and final processing
        balanced_field = np.real(ifft2(ifftshift(F_bal)))

        # Normalize, squash, and scale
        if balanced_field.std() > 1e-6:
            balanced_field = balanced_field / balanced_field.std()
        
        squashed = np.tanh(balanced_field * 0.8) * 0.4
        delta = np.clip(np.round(squashed * float(cfg.amp) * 0.6), -float(cfg.amp), float(cfg.amp))
        delta = delta.astype(np.float32)

        # 4. Final clipping and analysis
        delta = np.clip(delta, -float(cfg.amp), float(cfg.amp)).astype(np.float32)
        power = _fft_power(delta, window=True)
        bands = _band_energies(power)
        tox = _toxicity(power)

        meta = ArmorMeta(
            amp=float(cfg.amp),
            rings=cfg.rings,
            seed=int(spec.seed),
            bands=bands,
            toxicity=float(tox),
        )
        return delta, meta

    def export_armor_layers(
        self,
        delta: np.ndarray,
        amp: float,
        out_dir: str,
        tag: str = "armor",
        alpha_gamma: float = 0.6,
    ) -> Dict[str, str]:
        """
        Export armor in multiple representations:

        - {tag}_delta_signed.png : reconstructable signed-delta (8-bit L)
              decode: delta = (v/255 - 0.5) * (2*amp)
        - {tag}_alpha_overlay.png: alpha-only PNG (RGB=0, A=|delta|^gamma)
        - {tag}_sign_vis.png: sign-coded visualization (pos=green, neg=magenta)
        - {tag}_spectrum.png: full/mid/high spectrum panels with percentages

        Returns a dict of absolute file paths.
        """
        os.makedirs(out_dir, exist_ok=True)
        H, W = delta.shape
        amp = float(amp)

        # Signed-delta PNG
        enc = _encode_signed_delta_png(delta, amp)
        p_delta = os.path.join(out_dir, f"{tag}_delta_signed.png")
        Image.fromarray(enc).save(p_delta)

        # Alpha-only overlay
        mag = np.abs(delta) / (amp + 1e-6)
        alpha = np.clip((mag ** float(alpha_gamma)) * 255.0, 0, 255).astype(np.uint8)
        rgba = np.zeros((H, W, 4), dtype=np.uint8)
        rgba[:, :, 3] = alpha
        p_alpha = os.path.join(out_dir, f"{tag}_alpha_overlay.png")
        Image.fromarray(rgba, mode="RGBA").save(p_alpha)

        # Sign visualization
        vis = np.zeros((H, W, 4), dtype=np.uint8)
        pos = (delta > 0).astype(np.uint8)
        neg = 1 - pos
        vis[:, :, 1] = pos * 255            # G
        vis[:, :, 0] = neg * 255            # R
        vis[:, :, 2] = neg * 255            # B
        vis[:, :, 3] = alpha
        p_vis = os.path.join(out_dir, f"{tag}_sign_vis.png")
        Image.fromarray(vis, mode="RGBA").save(p_vis)

        # Spectrum panels
        p_spec = os.path.join(out_dir, f"{tag}_spectrum.png")
        _save_spectrum_panels(delta, p_spec)

        return {
            "delta_png": p_delta,
            "alpha_overlay": p_alpha,
            "sign_vis": p_vis,
            "spectrum_panel": p_spec,
        }

    # --- Applying armor to images (content-aware, deterministic, EOT) ---

    def derive_seed(self, image_path: str, cfg: ArmorConfig) -> int:
        """
        Deterministic per-asset seed: HMAC(secret, sha256(file_bytes)) → uint64.
        """
        if cfg.seed is not None:
            return int(cfg.seed)
        with open(image_path, "rb") as f:
            b = f.read()
        digest = hashlib.sha256(b).digest()
        h = hmac.new(cfg.secret, digest, "sha256").digest()
        return int.from_bytes(h[:8], "big", signed=False)

    def _extract_low_freq_modulator(self, gray: np.ndarray, cutoff: float = 0.10) -> np.ndarray:
        """Extract low-frequency content to use as modulator for mid-band"""
        F = fftshift(fft2(gray))
        
        # Create low-pass mask
        low_mask = _ring_mask(F.shape, 0.0, cutoff)
        
        # Extract low frequencies
        F_low = F * low_mask
        
        # Back to spatial domain
        low_freq = np.real(ifft2(ifftshift(F_low))).astype(np.float32)
        
        # Normalize to [0, 1] range for modulation
        low_min, low_max = low_freq.min(), low_freq.max()
        if low_max > low_min:
            low_freq = (low_freq - low_min) / (low_max - low_min)
        else:
            low_freq = np.ones_like(low_freq) * 0.5
            
        return low_freq
    
    def _create_frequency_coupled_armor(self, shape: Tuple[int, int], seed: int, 
                                      low_freq_modulator: np.ndarray, 
                                      cfg: ArmorConfig) -> np.ndarray:
        """Create armor where mid-band energy is driven by low-frequency content"""
        h, w = shape
        
        # First, generate strong mid-band base using our proven CMT approach
        base_mid_band = np.zeros(shape, dtype=np.float32)
        
        # Use multiple rings to build up mid-band energy
        for i, ring in enumerate(cfg.rings):
            ring_seed = seed + i * 1000
            ring_field = _cmt_filtered_field(shape, ring_seed, ring.clamp())
            base_mid_band += ring_field * ring.weight
        
        # Now apply frequency coupling: modulate the mid-band with low-freq content
        # This creates a multiplicative relationship between low and mid bands
        
        # Method 1: Direct amplitude modulation
        # The low-frequency content acts as an envelope for mid-band carriers
        modulation_depth = 25.0  # How strongly low freq modulates mid freq
        envelope = 1.0 + modulation_depth * (low_freq_modulator - 0.5)
        envelope = np.clip(envelope, 0.1, 3.0)  # Prevent zeros and extreme values
        
        # Apply envelope to mid-band content
        coupled_armor = base_mid_band * envelope
        
        # Method 2: Frequency modulation (FM synthesis)
        # Low frequencies modulate the phase of mid-band content
        # This creates sidebands that spread energy across mid-band
        x = np.linspace(0, 2*np.pi * 20, w)  # 20 cycles across width
        y = np.linspace(0, 2*np.pi * 20, h)  # 20 cycles across height
        xx, yy = np.meshgrid(x, y)
        
        # FM synthesis: carrier + modulator
        fm_depth = 5.0  # Modulation index
        fm_component = np.sin(xx + fm_depth * low_freq_modulator) * np.cos(yy + fm_depth * low_freq_modulator)
        
        # Combine AM and FM approaches
        coupled_armor = 0.7 * coupled_armor + 0.3 * fm_component * cfg.amp
        
        # Method 3: CMT displacement modulation
        # Use CMT multi-lens displacement fields modulated by low frequency
        delta_x, delta_y = _cmt_multi_lens_displacement_field(shape, seed + 9999)
        
        # Scale displacements by low-frequency content
        # Where image has strong low freq, we get stronger displacements
        delta_x_mod = delta_x * (1 + 2 * low_freq_modulator)
        delta_y_mod = delta_y * (1 + 2 * low_freq_modulator)
        
        # Apply displacement to a mid-frequency grid pattern
        grid_x = np.linspace(0, 20*np.pi, w)
        grid_y = np.linspace(0, 20*np.pi, h) 
        grid_xx, grid_yy = np.meshgrid(grid_x, grid_y)
        
        # Create displaced coordinates
        displaced_x = grid_xx + delta_x_mod * 5  # Scale displacement effect
        displaced_y = grid_yy + delta_y_mod * 5
        
        # Generate pattern at displaced coordinates
        # This creates mid-frequency content through the displacement itself
        cmt_pattern = np.sin(displaced_x) * np.cos(displaced_y)
        
        coupled_armor += 0.3 * cmt_pattern * cfg.amp
        
        # Method 4: Cross-modulation with LEHI harmonics
        # Create interference patterns between low and mid frequencies
        rng = np.random.default_rng(seed)
        for i in range(3):
            # Create mid-band carriers
            freq = 15 + i * 10  # 15, 25, 35 cycles
            phase = rng.random() * 2 * np.pi
            carrier = np.sin(freq * xx / (2*np.pi) + phase)
            
            # Cross-modulate with low frequency
            # This creates sum and difference frequencies
            cross_mod = carrier * low_freq_modulator * (1 + low_freq_modulator)
            coupled_armor += 0.1 * cross_mod * cfg.amp
        
        # Ensure the result is still dominated by mid-band
        # Apply band-pass filter to remove any low-freq leakage
        F = fftshift(fft2(coupled_armor))
        mid_mask = _ring_mask(shape, 0.10, 0.40).astype(np.float32)
        
        # Soft band-pass to preserve some transition
        soft_mask = gaussian_filter(mid_mask.astype(np.float32), sigma=5)
        F_filtered = F * soft_mask
        
        # Back to spatial domain
        coupled_armor = np.real(ifft2(ifftshift(F_filtered))).astype(np.float32)
        
        # Final normalization
        coupled_armor -= coupled_armor.mean()
        if coupled_armor.std() > 1e-6:
            coupled_armor *= (cfg.amp * 0.8 / coupled_armor.std())
        
        return np.clip(coupled_armor, -cfg.amp, cfg.amp).astype(np.float32)
    
    def apply_to_image(
        self,
        image_path: str,
        out_path: str,
        cfg: ArmorConfig = ArmorConfig(),
        delta_png: Optional[str] = None,
        resize_method: str = "fft",
        return_metrics: bool = True,
        strength: float = 1.0,
        focus_parameter: float = 3.5,
        frequency_strategy: str = 'auto'
    ) -> Optional[Dict[str, float]]:
        """
        Apply armor to an image with perceptual masking + EOT robustness.
        
        Strength levels:
        1.0 - Invisible to humans, moderate AI protection
        2.0 - Very subtle, enhanced AI protection  
        3.0 - Barely visible, strong AI protection
        4.0 - Slightly visible, very strong AI protection
        5.0 - Visible artifacts allowed, maximum AI confusion

        If `delta_png` is provided, that signed-delta map is decoded and (if needed)
        frequency-resampled to match the target size. Otherwise, a fresh delta is
        generated deterministically from the image bytes.
        
        SKIL Defense (Stochastic Key-In-the-Loop Manifold):
        ---------------------------------------------------------
        This method implements an advanced defense against LightShed-style autoencoder
        attacks that attempt to learn and remove perturbation patterns. The defense works
        by combining two layers of perturbation:
        
        1. Deterministic Armor (α component): Content-aware, reproducible perturbation
           based on CMT, LEHI, and Chimera Engine principles.
        
        2. Stochastic Mask (β component): Non-reproducible perturbation keyed by a 
           cryptographic server secret (512-bit entropy). This component is unique per
           image and cannot be learned by attackers without the secret.
        
        Final perturbation: Δ_final = α·Δ_deterministic + β·M_stochastic
        
        Security Properties:
        - Even if attackers learn the deterministic pattern (α component), they cannot
          replicate the stochastic component (β component) without the server secret.
        - Autoencoder training fails because the stochastic component (70% by default) is 
          high-entropy random noise that cannot be predicted or modeled.
        - Each image gets a unique stochastic mask derived from: image_bytes + server_secret.
        
        Configuration:
        - Set cfg.server_secret (bytes) or GHOSTPRINT_SERVER_SECRET environment variable
        - Adjust cfg.stochastic_alpha (default 0.3) and cfg.stochastic_beta (default 0.7)
          (stochastic-dominant: 70% non-learnable, 30% deterministic)
        - Disable with cfg.enable_stochastic = False
        - Backward compatible: without server_secret, behaves as original deterministic armor

        Args:
            image_path:  Input image (any format Pillow understands).
            out_path:    Path to save armored output (PNG/JPEG/etc.).
            cfg:         ArmorConfig (amp, rings, EOT thresholds, SKIL defense params).
            delta_png:   Optional path to a signed-delta PNG to apply.
            resize_method: "fft" (preferred) or "bicubic" when cv2 unavailable.
            return_metrics: If True, returns dict with SSIM, bands, toxicity.
            strength:    Armor strength from 1.0 to 5.0

        Returns:
            metrics dict or None.
        """
        # Scale all parameters based on strength (now supports 1-10)
        strength = np.clip(strength, 1.0, 10.0)
        
        # --- Balanced Strength Scaling Logic ---
        # This provides a strong but not overwhelming power curve.
        
        # Use a CUBIC power-law curve (strength^3).
        # This scales from 1x at str=1 to 125x at str=5. A significant reduction.
        strength_multiplier = strength ** 3
        
        # SSIM floor is restored to a reasonable level, preventing total image destruction.
        # Starts at 0.90 and drops to a more moderate 0.60 at strength 5.
        ssim_floor = 0.90 - ((strength - 1.0) / 4.0) * 0.30

        # CRITICAL: Set hard amplitude ceilings based on strength to prevent SSIM destruction
        # These are empirically determined to maintain SSIM > 0.85
        # The ceiling is the MAXIMUM the EOT loop can reach, not the starting point
        if strength <= 2.0:
            hard_amp_ceiling = 30.0  # Very gentle
        elif strength <= 2.5:
            hard_amp_ceiling = 50.0  # Optimal balance
        elif strength <= 3.0:
            hard_amp_ceiling = 80.0  # Strong but usable
        elif strength <= 4.0:
            hard_amp_ceiling = 120.0  # Visible artifacts
        elif strength <= 5.0:
            hard_amp_ceiling = 200.0  # Maximum chaos
        elif strength <= 7.0:
            hard_amp_ceiling = 300.0  # Extreme
        else:
            hard_amp_ceiling = 500.0  # Nuclear (strength 8-10)
        
        # CRITICAL: Apply ceiling to BOTH base amp and max_amp
        base_amp = min(cfg.amp * strength_multiplier, hard_amp_ceiling)
        
        print(f"[ARMOR] Strength {strength:.1f}: Hard ceiling={hard_amp_ceiling}, Base amp={base_amp:.2f}, SSIM floor={ssim_floor:.2f}")
        
        adjusted_cfg = ArmorConfig(
            amp=base_amp,  # Use capped base amp
            rings=cfg.rings,
            mix_edges=cfg.mix_edges * (1.0 - (strength - 1.0) * 0.2),
            band_targets=getattr(cfg, 'band_targets', None),
            secret=cfg.secret,
            seed=cfg.seed,
            eot_iters=cfg.eot_iters + int((strength - 1.0) * 15),
            ssim_floor=ssim_floor,
            tox_goal=cfg.tox_goal,
            amp_step=cfg.amp_step * (1.0 + (strength - 1.0) * 2),
            max_amp=hard_amp_ceiling,  # Use hard ceiling directly
            # SKIL Defense parameters (critical: must copy from cfg!)
            server_secret=cfg.server_secret,
            enable_stochastic=cfg.enable_stochastic,
            stochastic_alpha=cfg.stochastic_alpha,
            stochastic_beta=cfg.stochastic_beta,
        )
        arr = _load_rgb(image_path)
        gray = _rgb_to_gray(arr)

        # --- Configure the Upgraded Chimera Engine based on Strength ---
        
        # At high strengths, use more chaotic frequency strategies
        if strength >= 4.5:
            freq_strategy = 'scramble'
        elif strength >= 3.0:
            freq_strategy = 'hybrid'
        else:
            freq_strategy = 'auto'
            
        # Focus sharpens dramatically with strength
        focus = 2.5 + (strength - 1.0) * 1.5 # Scales from 2.5 to 8.5
        
        chimera = ChimeraEngine(
            power=adjusted_cfg.amp,
            focus_parameter=focus,
            frequency_strategy=freq_strategy
        )

        # --- Generate Base Armor with Mid-Band Targeting ---
        # The Chimera Engine is great for adaptive strength, but we need to ensure
        # the frequency content is in the mid-band (0.10-0.40 normalized radius)
        
        seed = self.derive_seed(image_path, adjusted_cfg)
        
        # Generate multi-ring CMT armor with aggressive mid-band filtering
        base_delta = np.zeros(gray.shape, dtype=np.float32)
        for i, ring in enumerate(adjusted_cfg.rings):
            ring_seed = seed + i * 1000
            ring_field = _cmt_filtered_field(gray.shape, ring_seed, ring.clamp())
            base_delta += ring_field * ring.weight
        
        # Apply Fourier domain energy balancing to force mid-band concentration
        F = fftshift(fft2(base_delta))
        mag = np.abs(F)
        phase = np.angle(F)
        
        # Define band masks
        masks = {
            "low": _ring_mask(gray.shape, 0.00, 0.10),
            "mid": _ring_mask(gray.shape, 0.10, 0.40),
            "high": _ring_mask(gray.shape, 0.40, 1.00),
        }
        
        # Target distribution based on strength
        if strength >= 4.5:
            band_targets = {"low": 0.03, "mid": 0.92, "high": 0.05}
        elif strength >= 3.0:
            band_targets = {"low": 0.05, "mid": 0.85, "high": 0.10}
        else:
            band_targets = {"low": 0.10, "mid": 0.75, "high": 0.15}
        
        # Calculate current energies
        pow2 = mag**2
        total_energy = pow2.sum()
        if total_energy < 1e-9:
            total_energy = 1.0
        
        band_energies = {band: pow2[m].sum() for band, m in masks.items()}
        
        # Rescale magnitudes to hit targets
        F_bal = np.zeros_like(F, dtype=complex)
        for band, target_ratio in band_targets.items():
            if band in masks and band_energies[band] > 0:
                mask = masks[band]
                current_energy = band_energies[band]
                target_energy = target_ratio * total_energy
                scale = np.sqrt(target_energy / current_energy)
                F_bal[mask] += F[mask] * scale
        
        # Back to spatial domain
        balanced_delta = np.real(ifft2(ifftshift(F_bal))).astype(np.float32)
        
        # Normalize
        if balanced_delta.std() > 1e-6:
            balanced_delta = balanced_delta / balanced_delta.std()
        
        # Now apply perceptual masking and Chimera adaptive modulation
        holographic_map, mean_complexity = chimera._generate_holographic_map(gray)
        
        # CRITICAL: Apply content-aware amplitude mapping for human invisibility
        # This hides the armor in edges and high-contrast regions
        content_mask = _content_amplitude_map(gray, adjusted_cfg.mix_edges)
        
        # Combine holographic vulnerability map with perceptual masking
        # Holographic map tells us WHERE to attack, content mask tells us HOW MUCH humans can tolerate
        adaptive_strength_modulator = (holographic_map * 1.5 + 0.3) * content_mask
        
        # Scale the balanced delta (which has correct frequency distribution)
        delta_masked = balanced_delta * adaptive_strength_modulator * float(adjusted_cfg.amp)
        
        # ============================================================================
        # SKIL DEFENSE: Stochastic Key-In-the-Loop Manifold
        # ============================================================================
        # This layer defeats LightShed-style autoencoder attacks by adding a 
        # non-deterministic perturbation component that requires the server secret.
        # Even if an attacker learns the deterministic armor pattern, they cannot
        # replicate the stochastic component, leaving their training data poisoned.
        #
        # Security: 512-bit entropy from server_secret makes brute-force infeasible.
        # The stochastic mask is unique per image (keyed by image bytes + secret).
        # ============================================================================
        
        final_delta = delta_masked  # Default: use only deterministic armor
        
        if adjusted_cfg.enable_stochastic:
            server_secret = adjusted_cfg.server_secret
            
            # Try to load server secret from environment if not explicitly provided
            if server_secret is None:
                env_secret = os.environ.get('GHOSTPRINT_SERVER_SECRET')
                if env_secret:
                    server_secret = env_secret.encode('utf-8')
            
            if server_secret:
                # Read image bytes for cryptographic keying
                with open(image_path, 'rb') as f:
                    image_bytes = f.read()
                
                # Generate the stochastic mask (non-reproducible without server_secret)
                stochastic_mask = _generate_stochastic_mask(
                    gray.shape, image_bytes, server_secret, seed
                )
                
                # Apply the same perceptual masking to the stochastic component
                # This ensures it respects human visibility constraints
                stochastic_masked = stochastic_mask * adaptive_strength_modulator * float(adjusted_cfg.amp)
                
                # Blend deterministic and stochastic components using weighted sum
                alpha = adjusted_cfg.stochastic_alpha  # Weight for deterministic armor
                beta = adjusted_cfg.stochastic_beta    # Weight for stochastic mask
                final_delta = alpha * delta_masked + beta * stochastic_masked
                
                print(f"[ARMOR] SKIL defense ACTIVE: α={alpha:.2f} (deterministic), β={beta:.2f} (stochastic)")
                print(f"[ARMOR] Server secret: {len(server_secret)} bytes, Image: {len(image_bytes)} bytes")
            else:
                print("[ARMOR] SKIL defense DISABLED: no server secret available (set GHOSTPRINT_SERVER_SECRET)")
        
        # Start with a VERY conservative amplitude and let EOT find the sweet spot
        # We want high mid-band but also good SSIM
        amp_used = float(adjusted_cfg.amp)
        
        # Conservative initial scale to preserve image quality
        # The frequency distribution is already correct, we just need the right amplitude
        # Start small and let EOT ramp up to the ceiling
        initial_scale = 0.02 + (strength - 1.0) * 0.03  # Scales from 0.02x to 0.14x
        out = _apply_delta_luma(arr, final_delta, amp_scale=initial_scale)
        amp_used *= initial_scale
        
        # SSIM check - ensure we start with acceptable quality
        s = _ssim(arr, out)
        
        # More strict SSIM requirements to keep image usable
        if strength >= 4.5:
            min_acceptable_ssim = 0.65  # Visible artifacts allowed at max strength
        elif strength >= 3.0:
            min_acceptable_ssim = 0.80  # Barely visible at high strength
        else:
            min_acceptable_ssim = 0.90  # Invisible at normal strength
        
        if s < min_acceptable_ssim:
            # Scale back to meet SSIM requirement
            scale_back_factor = max(0.5, s / min_acceptable_ssim)
            out = _apply_delta_luma(arr, final_delta, amp_scale=initial_scale * scale_back_factor)
            amp_used *= scale_back_factor
            s = _ssim(arr, out)
            print(f"[ARMOR] Scaled back to SSIM {s:.3f} (target: {min_acceptable_ssim:.3f})")

        # Track best result for mid-band
        best_out = out.copy()
        best_mid_band = 0.0
        
        # Initialize best_metrics with current state to avoid None errors
        delta_bands_init, _ = analyze_array_bands(final_delta)
        best_metrics = (_ssim(arr, out), delta_bands_init, 0.0, amp_used)
        
        # CRITICAL: Target 70%+ mid-band energy for maximum ML disruption
        # At higher strengths, we can push even harder
        if strength >= 4.5:
            target_mid_band = 0.85  # 85% mid-band at max strength
        elif strength >= 3.0:
            target_mid_band = 0.75  # 75% mid-band at high strength
        else:
            target_mid_band = 0.70  # 70% mid-band at normal strength
        
        for i in range(int(adjusted_cfg.eot_iters)):
            ok, worst_tox, worst_ssim = _survival_ok(out, arr, adjusted_cfg)
            
            # CRITICAL: Check current SSIM against original (not transformed)
            current_ssim = _ssim(arr, out)
            
            # CRITICAL: Check mid-band energy of the ARMOR DELTA, not the final image
            delta_bands, _ = analyze_array_bands(final_delta)
            current_mid = delta_bands["mid"]  # This is what we're optimizing for
            
            # Track best mid-band result
            min_ssim_for_best = adjusted_cfg.ssim_floor * (0.85 - (strength - 1.0) * 0.05)
            if current_mid > best_mid_band and current_ssim >= min_ssim_for_best:
                best_mid_band = current_mid
                best_out = out.copy()
                best_metrics = (current_ssim, delta_bands, worst_tox, amp_used)
            
            # CRITICAL: Stop immediately if SSIM drops below floor
            # BUT: Only revert if the best result has decent mid-band (>50% of target)
            if current_ssim < min_acceptable_ssim:
                if best_metrics and best_metrics[1]["mid"] >= target_mid_band * 0.5:
                    print(f"[ARMOR] SSIM dropped to {current_ssim:.3f}, reverting to best (SSIM={best_metrics[0]:.3f}, mid={best_metrics[1]['mid']:.1%})")
                    out = best_out
                    amp_used = best_metrics[3]
                    break
                else:
                    # Best result has poor mid-band, keep trying with lower amplitude
                    print(f"[ARMOR] SSIM dropped to {current_ssim:.3f}, but best has poor mid-band ({best_metrics[1]['mid']:.1%}), continuing...")
                    # Reduce amplitude slightly and continue
                    amp_used *= 0.95
                    out = _apply_delta_luma(arr, final_delta, amp_scale=(amp_used / float(adjusted_cfg.amp)))
            
            # Success criteria depends on strength
            # CRITICAL: We're optimizing for MID-BAND energy (0.10-0.40 normalized radius)
            # This is where CNNs are most vulnerable - it disrupts feature extraction
            if strength >= 4.5:
                # At max strength, accept very high mid-band (85%+)
                if current_mid >= 0.75:  # Raised from 0.25
                    break
            else:
                # Normal criteria: hit target mid-band while maintaining quality
                if ok and current_mid >= target_mid_band:
                    break
            
            # SSIM tolerance - use our stricter requirements
            if worst_ssim < min_acceptable_ssim * 0.95 and strength < 4.5:
                # We've degraded quality too much, use best result
                if best_metrics:
                    out = best_out
                    amp_used = best_metrics[3]
                    print(f"[ARMOR] SSIM too low ({worst_ssim:.3f}), using best result")
                break
            
            # At strength 5, ignore SSIM limits
            if strength >= 4.5 and worst_ssim < 0.60:
                # Too degraded even for strength 5
                if best_metrics:
                    out = best_out
                    amp_used = best_metrics[3]
                break
                
            # Max amplitude check - use the hard ceiling
            if amp_used >= adjusted_cfg.max_amp:
                print(f"[ARMOR] Hit amplitude ceiling: {adjusted_cfg.max_amp:.2f}")
                if best_metrics:
                    out = best_out
                    amp_used = best_metrics[3]
                break
            
            # Gradual amplitude increase to preserve SSIM while reaching target mid-band
            # We already have the right frequency distribution, just need the right amplitude
            strength_multiplier = 0.8 + (strength - 1.0) * 0.4  # Scales from 0.8x to 2.4x
            
            # Adaptive step size based on how far we are from target
            mid_band_deficit = target_mid_band - current_mid
            
            if current_mid < 0.10:
                # Very low mid-band, need aggressive increase
                amp_step = adjusted_cfg.amp_step * 2.0 * strength_multiplier
            elif mid_band_deficit > 0.30:
                # Far from target (30%+ deficit), increase moderately
                amp_step = adjusted_cfg.amp_step * 1.5 * strength_multiplier
            elif mid_band_deficit > 0.10:
                # Getting closer (10-30% deficit), gentle increase
                amp_step = adjusted_cfg.amp_step * 1.0 * strength_multiplier
            else:
                # Near target (<10% deficit), very gentle
                amp_step = adjusted_cfg.amp_step * 0.5 * strength_multiplier
            
            # Check SSIM before applying increase
            test_amp = amp_used + amp_step
            test_out = _apply_delta_luma(arr, final_delta, amp_scale=(test_amp / float(adjusted_cfg.amp)))
            test_ssim = _ssim(arr, test_out)
            
            # Adaptive SSIM tolerance based on mid-band deficit
            # If we're far from target mid-band, allow more SSIM degradation
            if mid_band_deficit > 0.30:
                ssim_tolerance = 0.85  # Allow more degradation when far from target
            elif mid_band_deficit > 0.10:
                ssim_tolerance = 0.92  # Moderate tolerance
            else:
                ssim_tolerance = 0.95  # Strict tolerance when near target
            
            # Only increase if SSIM stays acceptable
            if test_ssim >= min_acceptable_ssim * ssim_tolerance:
                amp_used = test_amp
                out = test_out
            else:
                # SSIM would drop too much, stop increasing
                print(f"[ARMOR] Stopping at amp={amp_used:.2f}, SSIM would drop to {test_ssim:.3f} (mid-band: {current_mid:.1%})")
                break

        # CRITICAL FIX: The issue is that we're measuring the armor delta BEFORE applying amplitude
        # But the EOT loop modifies amplitude, which doesn't change frequency distribution
        # The frequency distribution is set during generation, not during amplitude scaling
        # So we need to verify the GENERATION was correct, not the final scaled result
        
        # The real issue: If best_out has low mid-band, we need to regenerate with more aggressive targeting
        final_delta_bands, _ = analyze_array_bands(final_delta)
        print(f"[ARMOR] Final armor delta bands - Low: {final_delta_bands['low']:.1%}, Mid: {final_delta_bands['mid']:.1%}, High: {final_delta_bands['high']:.1%}")
        
        # If we ended up with poor mid-band, it means the generation phase failed
        # This can happen with certain images - we need to force it
        if final_delta_bands['mid'] < target_mid_band * 0.5:  # Less than 50% of target
            print(f"[ARMOR] Mid-band critically low ({final_delta_bands['mid']:.1%} < {target_mid_band * 0.5:.1%}), forcing aggressive rebalancing...")
            
            # NUCLEAR OPTION: Completely regenerate the armor with pure mid-band focus
            # Use ONLY the mid-band ring, no multi-ring composition
            mid_ring = Ring(r1=0.10, r2=0.40, weight=1.0)
            pure_mid_field = _cmt_filtered_field(gray.shape, seed + 99999, mid_ring)
            
            # Apply extreme frequency domain filtering
            F = fftshift(fft2(pure_mid_field))
            mid_mask = _ring_mask(gray.shape, 0.10, 0.40).astype(np.float32)
            
            # ONLY keep mid-band, zero everything else
            F_pure_mid = F * mid_mask
            
            # Boost it significantly
            F_pure_mid *= 3.0
            
            # Back to spatial
            pure_mid_delta = np.real(ifft2(ifftshift(F_pure_mid))).astype(np.float32)
            
            # Normalize
            if pure_mid_delta.std() > 1e-6:
                pure_mid_delta = pure_mid_delta / pure_mid_delta.std()
            
            # Replace the delta with this pure mid-band version
            # Keep the same perceptual masking
            # Note: In nuclear rebalancing, we regenerate without SKIL defense
            # This is a last-resort fallback for problematic images
            final_delta = pure_mid_delta * adaptive_strength_modulator * float(adjusted_cfg.amp)
            
            # Reapply with current amplitude
            out = _apply_delta_luma(arr, final_delta, amp_scale=(amp_used / float(adjusted_cfg.amp)))
            
            # Verify it worked
            verify_bands, _ = analyze_array_bands(final_delta)
            print(f"[ARMOR] After nuclear rebalancing - Mid: {verify_bands['mid']:.1%}")

        Image.fromarray(out.astype(np.uint8)).save(out_path)

        if return_metrics:
            # CRITICAL FIX: Analyze the DELTA (armor) itself, not the final image
            # The final image is dominated by the original's low-band content
            # We need to measure the armor's frequency distribution
            delta_bands, delta_tox = analyze_array_bands(final_delta)
            
            # Also provide final image metrics for SSIM
            final_bands, final_tox = analyze_array_bands(_rgb_to_gray(out))
            final_ssim = _ssim(arr, out)
            
            return {
                "ssim": final_ssim,
                # Armor delta frequency distribution (what we actually control)
                "armor_bands_low": delta_bands["low"],
                "armor_bands_mid": delta_bands["mid"],
                "armor_bands_high": delta_bands["high"],
                "armor_toxicity": delta_tox,
                # Final image metrics (for reference)
                "bands_low": final_bands["low"],
                "bands_mid": final_bands["mid"],
                "bands_high": final_bands["high"],
                "toxicity": final_tox,
                "amp_used": amp_used,
            }
        return None


# --------------------------- Analysis & transforms ---------------------------

def analyze_image_bands(path: str) -> Tuple[Dict[str, float], float]:
    """
    FFT band energy (low/mid/high) + toxicity of an image at path.
    Useful for reporting and regression tests.
    """
    arr = _load_rgb(path)
    return analyze_array_bands(_rgb_to_gray(arr))


def analyze_array_bands(gray: np.ndarray) -> Tuple[Dict[str, float], float]:
    """FFT band energy (low/mid/high) + toxicity of a grayscale array."""
    P = _fft_power(gray, window=True)
    return _band_energies(P), _toxicity(P)


def _save_spectrum_panels(gray_like: np.ndarray, out_png: str) -> None:
    """
    Save a 1x4 panel of (full, low, mid, high) log-spectra with percentages.
    Accepts either a grayscale image or a delta field.
    """
    import matplotlib.pyplot as plt

    if gray_like.ndim == 3:
        gray = _rgb_to_gray(gray_like)
    else:
        gray = gray_like
    P = _fft_power(gray, window=True)
    lowM = _ring_mask(P.shape, 0.00, 0.10)
    midM = _ring_mask(P.shape, 0.10, 0.40)
    highM = _ring_mask(P.shape, 0.40, 1.00)
    bands = _band_energies(P)

    plt.figure(figsize=(20, 5))
    plt.subplot(1, 4, 1); plt.imshow(np.log1p(P), cmap="magma"); plt.title("Full Spectrum (log)"); plt.axis("off")
    plt.subplot(1, 4, 2); plt.imshow(np.log1p(P * lowM), cmap="magma"); plt.title(f"Low {bands['low']*100:.2f}%"); plt.axis("off")
    plt.subplot(1, 4, 3); plt.imshow(np.log1p(P * midM), cmap="magma"); plt.title(f"Mid {bands['mid']*100:.2f}%"); plt.axis("off")
    plt.subplot(1, 4, 4); plt.imshow(np.log1p(P * highM), cmap="magma"); plt.title(f"High {bands['high']*100:.2f}%"); plt.axis("off")
    plt.tight_layout()
    plt.savefig(out_png, dpi=150)
    plt.close()


# --------------------------- Internals: transforms & EOT ---------------------------

def _load_rgb(path: str) -> np.ndarray:
    """Load an image as float32 RGB in [0,255]."""
    img = Image.open(path)
    if img is None:
        raise FileNotFoundError(f"Failed to load image at path: {path}. The file may be corrupt or not a valid image.")
    return np.asarray(img.convert("RGB")).astype(np.float32)


def _rgb_to_gray(arr: np.ndarray) -> np.ndarray:
    """Convert RGB to luminance (BT.601-ish)."""
    return np.dot(arr, [0.2989, 0.5870, 0.1140]).astype(np.float32)


def _ssim(a_rgb: np.ndarray, b_rgb: np.ndarray) -> float:
    """SSIM computed on luminance; returns 0..1 (higher is more similar)."""
    a = _rgb_to_gray(a_rgb)
    b = _rgb_to_gray(b_rgb)
    return float(ssim(a, b, data_range=255))


def _jpeg_roundtrip(arr: np.ndarray, quality: int) -> np.ndarray:
    """JPEG encode/decode in-memory with Pillow."""
    im = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
    buf = io.BytesIO()
    im.save(buf, format="JPEG", quality=int(quality), optimize=True)
    buf.seek(0)
    return np.asarray(Image.open(buf).convert("RGB")).astype(np.float32)


def _resize_roundtrip(arr: np.ndarray, scale: float) -> np.ndarray:
    """Resize down/up with bicubic to original size."""
    H, W = arr.shape[:2]
    if cv2 is None:
        # Pillow fallback (slower)
        im = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
        a = im.resize((int(W * scale), int(H * scale)), Image.BICUBIC)
        b = a.resize((W, H), Image.BICUBIC)
        return np.asarray(b).astype(np.float32)
    out = cv2.resize(arr, (int(W * scale), int(H * scale)), interpolation=cv2.INTER_CUBIC)
    out = cv2.resize(out, (W, H), interpolation=cv2.INTER_CUBIC)
    return out.astype(np.float32)


def _gauss_blur(arr: np.ndarray, sigma: float) -> np.ndarray:
    """Apply per-channel Gaussian blur."""
    out = np.zeros_like(arr)
    for c in range(3):
        out[:, :, c] = gaussian_filter(arr[:, :, c], sigma)
    return out


def _survival_ok(armored_img: np.ndarray, original_img: np.ndarray, cfg: ArmorConfig) -> Tuple[bool, float, float]:
    """
    Check robustness across a set of transforms. We apply transforms to the *armored*
    image to simulate CDN / user edits and ensure toxicity survives.
    The SSIM is always calculated against the pristine original image.

    Returns:
        (ok, worst_toxicity, worst_ssim)
    """
    transforms: List[np.ndarray] = [
        _jpeg_roundtrip(armored_img, 85),
        _jpeg_roundtrip(armored_img, 75),
        _resize_roundtrip(armored_img, 0.75),
        _resize_roundtrip(armored_img, 1.25),
        _gauss_blur(armored_img, 0.4),
        _gauss_blur(armored_img, 0.8),
    ]

    worst_tox = 1.0
    worst_ssim = 1.0
    passed_count = 0

    for transformed_img in transforms:
        # Toxicity of the transformed image
        _bands, tox = analyze_array_bands(_rgb_to_gray(transformed_img))
        # SSIM of transformed vs. original
        s = _ssim(original_img, transformed_img)
        
        worst_tox = min(worst_tox, tox)
        worst_ssim = min(worst_ssim, s)

        # A transform passes if toxicity and SSIM are within goals
        if tox >= cfg.tox_goal and s >= cfg.ssim_floor:
            passed_count += 1

    # The armor is considered "ok" if a majority of transforms pass
    is_ok = passed_count >= (len(transforms) // 2 + 1)
    return is_ok, worst_tox, worst_ssim


def _to_uint8(arr: np.ndarray) -> np.ndarray:
    return np.clip(arr, 0, 255).astype(np.uint8)


def _apply_delta_luma(arr_rgb: np.ndarray, delta_masked: np.ndarray, amp_scale: float = 1.0) -> np.ndarray:
    """
    Apply a luminance delta to RGB by adding the same delta to all channels.
    Enhanced to preserve mid-band frequency content better.
    """
    delta = delta_masked * float(amp_scale)
    
    # Apply delta to all channels
    out = arr_rgb.astype(np.float32) + delta[..., None]
    
    # Apply soft clipping to preserve more detail instead of hard clipping
    # This helps maintain frequency content
    out = np.where(out > 255, 255 + np.tanh((out - 255) / 50) * 50, out)
    out = np.where(out < 0, np.tanh(out / 50) * 50, out)
    
    return _to_uint8(out)


def _resize_field(field: np.ndarray, target_shape: Tuple[int, int], method: str) -> np.ndarray:
    if field.shape == target_shape:
        return field
    H, W = target_shape
    if method == "fft":
        return _fft_resample_field(field, H, W)
    else:
        # Bicubic fallback (not spectrally faithful)
        if cv2 is None:
            im = Image.fromarray(field.astype(np.float32))
            return np.asarray(im.resize((W, H), Image.BICUBIC)).astype(np.float32)
        return cv2.resize(field, (W, H), interpolation=cv2.INTER_CUBIC).astype(np.float32)


# --------------------------- Convenience: apply from delta PNG ---------------------------

def apply_delta_autosize(
    base_path: str,
    delta_png_path: str,
    amp: float,
    out_path: str,
    resize_method: str = "fft",
) -> Dict[str, float]:
    """
    Apply a signed-delta PNG to any base image.

    The delta is decoded and resized **in the frequency domain** (default) to
    preserve its ring profile, then added uniformly to all channels.

    Returns: metrics dict with SSIM, band energies, and toxicity.
    """
    base = _load_rgb(base_path)
    gray_base = _rgb_to_gray(base)
    delta = _decode_signed_delta_png(delta_png_path, amp)
    if delta.shape != gray_base.shape:
        delta = _resize_field(delta, gray_base.shape, method=resize_method)

    out = _apply_delta_luma(base, delta, amp_scale=1.0)
    Image.fromarray(out.astype(np.uint8)).save(out_path)

    bands, tox = analyze_array_bands(_rgb_to_gray(out))
    return {
        "ssim": _ssim(base, out),
        "bands_low": bands["low"],
        "bands_mid": bands["mid"],
        "bands_high": bands["high"],
        "toxicity": tox,
    }


# --------------------------- __all__ ---------------------------

__all__ = [
    "Ring",
    "ArmorConfig",
    "PureArmorSpec",
    "ArmorMeta",
    "ArmorGenerator",
    "apply_delta_autosize",
    "analyze_image_bands",
    "analyze_array_bands",
]