File size: 72,713 Bytes
2ff1f39 958d51b 2ff1f39 958d51b 2ff1f39 e98ba5c 5390afe e98ba5c 2ff1f39 e98ba5c 5390afe e98ba5c 2ff1f39 e98ba5c 5390afe e98ba5c 2ff1f39 e98ba5c 2ff1f39 e98ba5c 5390afe e98ba5c 2ff1f39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 |
#!/usr/bin/env python3
"""
Ghostprint Semantic Encryption Engine with Information Geometry AI Poisoning
==========================================================================
Complete implementation integrating proven AI poisoning techniques through
information geometry masks and hybrid perturbation methods.
"""
import os
import sys
import time
import json
import hashlib
import lzma
import base64
import math
import cmath
import itertools
import struct
from datetime import datetime
from typing import Dict, List, Tuple, Any, Optional
from dataclasses import dataclass
from enum import Enum
import numpy as np
from scipy.special import gamma, airy, jv
from ghost_engine_configs import get_config
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
from PIL import Image, PngImagePlugin
from io import BytesIO
from armor import ArmorGenerator, ArmorConfig, Ring, apply_delta_autosize, analyze_array_bands
# --- Global Dependency Check for OpenCV ---
try:
import cv2
CV2_AVAILABLE = True
except ImportError:
cv2 = None
CV2_AVAILABLE = False
# OpenCV is optional - all core functionality works with Pillow
# Only suppress this message in production, show in debug mode
import os
if os.environ.get('GHOSTPRINT_DEBUG', '').lower() == 'true':
print("[INFO] OpenCV not installed. Using Pillow for all image operations (fully functional).")
# Core mathematical constants
C1 = complex(0.587, 1.223) # Complexity weighting coefficient
C2 = complex(-0.994, 0.0) # Magnitude scaling coefficient
# Harmonic frequencies for enhanced phase encoding
HARMONIC_FREQUENCIES = [271, 341, 491]
HARMONIC_AMPLITUDES = [0.033, 0.050, 0.100]
# Homoglyph mapping for AI poisoning
HOMOGLYPHS = {
"a": "а", # Latin a → Cyrillic a (U+0061 → U+0430)
"e": "е", # Latin e → Cyrillic e (U+0065 → U+0435)
"i": "і", # Latin i → Ukrainian i (U+0069 → U+0456)
"o": "о", # Latin o → Cyrillic o (U+006F → U+043E)
"p": "р", # Latin p → Cyrillic p (U+0070 → U+0440)
"c": "с", # Latin c → Cyrillic c (U+0063 → U+0441)
"x": "х", # Latin x → Cyrillic x (U+0078 → U+0445)
}
# Inverted homoglyph map for de-poisoning
REVERSE_HOMOGLYPHS = {v: k for k, v in HOMOGLYPHS.items()}
class LensFunction(Enum):
"""Mathematical lens functions for CMT transformation"""
GAMMA = "gamma"
AIRY = "airy"
BESSEL = "bessel"
@dataclass
class GeometricFingerprint:
"""Container for complete geometric fingerprint data"""
cmt_signature: List[complex]
lehi_pattern: List[float]
lgrm_map: np.ndarray
holographic_field: List[complex]
srl_stability: float
sefa_emergence: float
metadata: Dict[str, Any]
class InformationGeometryEngine:
"""Core engine for information geometry transformations with AI poisoning"""
def __init__(self):
self.c1 = C1
self.c2 = C2
# ---------- Information Geometry Mask Generation ----------
def golden_mask_positions(self, n: int, phi: float = (1 + 5 ** 0.5) / 2) -> List[int]:
"""Generate positions using golden ratio distribution"""
positions = []
x = 0.0
for i in range(n):
x = (x + phi) % 1.0
positions.append(int(x * n))
return sorted(set(positions))
def fibonacci_mask_positions(self, n: int) -> List[int]:
"""Generate positions using Fibonacci sequence"""
fib = [1, 2]
while fib[-1] < n:
fib.append(fib[-1] + fib[-2])
return [f % n for f in fib if f < n]
def harmonic_mask_positions(self, n: int, freq: int = 5) -> List[int]:
"""Generate positions using harmonic wave distribution"""
return [int((np.sin(i * freq) + 1) / 2 * n) for i in range(1, n, max(1, n // 20))]
def generate_content_keyed_harmonics(self, data: bytes, content_hash: str) -> List[float]:
"""Generate harmonics keyed to content hash for deterministic perturbations"""
hash_bytes = bytes.fromhex(content_hash[:12]) # Use first 6 bytes
# Extract parameters from hash
freq1 = 271 + (hash_bytes[0] % 50)
freq2 = 341 + (hash_bytes[1] % 50)
freq3 = 491 + (hash_bytes[2] % 50)
amp1 = 0.033 * (1 + hash_bytes[3] / 512)
amp2 = 0.050 * (1 + hash_bytes[4] / 512)
amp3 = 0.100 * (1 + hash_bytes[5] / 512)
harmonics = []
N = len(data)
for k in range(N):
harmonic_value = (
amp1 * math.sin(2 * math.pi * freq1 * k / N) +
amp2 * math.sin(2 * math.pi * freq2 * k / N) +
amp3 * math.sin(2 * math.pi * freq3 * k / N)
)
harmonics.append(harmonic_value)
return harmonics
# ---------- AI Poisoning Methods ----------
def apply_homoglyph_substitution(self, text: str, ratio: float = 0.25, content_hash: str = None) -> str:
"""Apply homoglyph character substitution for AI poisoning"""
if content_hash:
# Use content hash for deterministic randomness
np.random.seed(int(content_hash[:8], 16) % (2**32))
chars = list(text)
n = len(chars)
swap_count = int(ratio * n)
if swap_count == 0:
return text
swap_positions = np.random.choice(n, swap_count, replace=False)
for pos in swap_positions:
ch = chars[pos].lower()
if ch in HOMOGLYPHS:
chars[pos] = HOMOGLYPHS[ch]
return "".join(chars)
def apply_multi_mask_injection(self, text: str, content_hash: str = None) -> str:
"""Apply zero-width space injection at geometrically determined positions"""
n = len(text)
# Generate injection positions using multiple masks
golden_positions = self.golden_mask_positions(n)
fibonacci_positions = self.fibonacci_mask_positions(n)
harmonic_positions = self.harmonic_mask_positions(n)
# Combine all mask positions
injection_positions = set(golden_positions + fibonacci_positions + harmonic_positions)
# Apply zero-width space injection
zwsp = "\u200b" # Zero-width space
result = []
for i, char in enumerate(text):
result.append(char)
if i in injection_positions:
result.append(zwsp)
return "".join(result)
def apply_hybrid_text_poisoning(self, text: str, strength: float = 1.0, content_hash: str = None) -> str:
"""Apply hybrid AI poisoning combining multiple techniques"""
if not content_hash:
content_hash = hashlib.sha256(text.encode()).hexdigest()
# Step 1: Homoglyph substitution
homoglyph_ratio = 0.15 + (strength * 0.15) # 0.15-0.30 range
step1 = self.apply_homoglyph_substitution(text, homoglyph_ratio, content_hash)
# Step 2: Multi-mask injection
step2 = self.apply_multi_mask_injection(step1, content_hash)
return step2
def apply_invisible_armor_image_poisoning(self, image_data: bytes, strength: float = 1.0,
focus_parameter: float = 3.5,
frequency_strategy: str = 'auto') -> bytes:
"""
Applies the full suite of Invisible Armor protections using the advanced Chimera Engine.
This function is the core of the image protection service.
"""
try:
import tempfile
# The armor engine currently requires file paths, so we use temporary files.
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_input:
temp_input.write(image_data)
temp_input_path = temp_input.name
temp_output_path = temp_input_path + ".armored.png"
armor_gen = ArmorGenerator()
config = ArmorConfig() # Base config, specific parameters are passed below
armor_gen.apply_to_image(
image_path=temp_input_path,
out_path=temp_output_path,
cfg=config,
return_metrics=False,
# Pass all advanced parameters to the armor engine
strength=strength,
focus_parameter=focus_parameter,
frequency_strategy=frequency_strategy
)
with open(temp_output_path, "rb") as f:
armored_data = f.read()
# Clean up temporary files
os.remove(temp_input_path)
os.remove(temp_output_path)
return armored_data
except Exception as e:
print(f"[ERROR] Invisible Armor application failed: {e}.")
return image_data # Return original data on failure to prevent data loss
def apply_ultra_subtle_armor(self, image_data: bytes) -> bytes:
"""
Apply ultra-subtle protection that is completely invisible to human eyes.
Only modifies 0.01% of pixels by ±1 value.
"""
try:
img = Image.open(BytesIO(image_data))
original_mode = img.mode
original_format = img.format if img.format else "PNG"
img_array = np.array(img).astype(np.float32)
if img_array.ndim == 2: # Grayscale
h, w = img_array.shape
channels = 1
elif img_array.ndim == 3: # RGB, RGBA
h, w, channels = img_array.shape
else:
return image_data
# Generate deterministic seed
data_hash_int = int(hashlib.sha256(image_data).hexdigest()[:16], 16)
rng = np.random.default_rng(data_hash_int)
# Modify only 0.01% of pixels
total_pixels = h * w
pixels_to_modify = max(1, int(total_pixels * 0.0001)) # 0.01%
# Select random pixel positions
flat_indices = rng.choice(total_pixels, size=pixels_to_modify, replace=False)
# Convert to 2D coordinates
y_coords = flat_indices // w
x_coords = flat_indices % w
# Apply minimal changes
modified_img_array = img_array.copy()
for i in range(pixels_to_modify):
y, x = y_coords[i], x_coords[i]
change = rng.choice([-1, 1])
if channels == 1:
modified_img_array[y, x] = np.clip(modified_img_array[y, x] + change, 0, 255)
else:
# Modify only one channel per pixel
channel = rng.integers(0, channels)
modified_img_array[y, x, channel] = np.clip(
modified_img_array[y, x, channel] + change, 0, 255
)
# Convert back to image
modified_img_array = modified_img_array.astype(np.uint8)
result_img = Image.fromarray(modified_img_array, mode=original_mode)
# Save in original format
output = BytesIO()
if original_format == 'JPEG':
result_img.save(output, format='JPEG', quality=100, optimize=True)
else:
result_img.save(output, format=original_format)
return output.getvalue()
except Exception as e:
print(f"[ERROR] Ultra-subtle armor failed: {e}")
return image_data
def apply_subtle_geometric_watermark(self, data: bytes, fingerprint: GeometricFingerprint, watermark_text: str) -> bytes:
"""Applies a very subtle, almost imperceptible geometric watermark to the data bytes.
This is NOT AI poisoning; it's minimal modification for watermarking purposes.
"""
if not watermark_text or len(data) == 0: # If no watermark or empty data, return original
return data
modified_data = bytearray(data)
watermark_hash = hashlib.sha256(watermark_text.encode('utf-8')).hexdigest()
hash_int = int(watermark_hash[:8], 16)
# Use a deterministic pseudo-random sequence for positions and values
import random
random_gen = random.Random(hash_int) # Seed with watermark hash
# Use some features from the fingerprint for geometric distribution
# Example: magnitudes of cmt_signature can guide where to place subtle changes
cmt_magnitudes = [abs(c) for c in fingerprint.cmt_signature]
if not cmt_magnitudes: cmt_magnitudes = [1.0] # Fallback for empty fingerprint signature
# Determine number of bytes to subtly alter (very small percentage)
# Max 0.1% of data or a fixed small number, to ensure subtlety
num_modifications = min(len(data) // 1000, 100) # Max 100 bytes, or 0.1% of data
if num_modifications == 0 and len(data) > 0: num_modifications = 1 # At least one if data exists
# Select positions based on a combination of watermark hash and fingerprint features
# Use a simple rolling hash combined with scaled fingerprint features to pick positions
potential_positions = []
for i in range(num_modifications * 5): # Generate more candidates than needed
# Combine current index, hash_int, and a scaled fingerprint magnitude for position
fp_value = cmt_magnitudes[i % len(cmt_magnitudes)]
pos = (hash_int + i + int(fp_value * 1000)) % len(data)
potential_positions.append(pos)
# Select unique positions ensuring they are within data bounds
chosen_positions = sorted(list(set(potential_positions)))[:num_modifications]
for pos in chosen_positions:
if pos < len(modified_data):
# Apply a minimal, content-keyed modification (e.g., +/- 1 or 0)
# The change value is also determined deterministically
change_value = (random_gen.randint(-1, 1)) # -1, 0, or 1
modified_data[pos] = (modified_data[pos] + change_value) % 256
return bytes(modified_data)
def apply_geometric_byte_poisoning(self, data: bytes, strength: float = 1.0) -> bytes:
"""Apply aggressive geometric byte perturbations.
Changes are significant (-20 to +20) to maximize AI confusion.
Strength controls the intensity and density of changes.
"""
poisoned_data = bytearray(data)
if len(data) == 0: return bytes(poisoned_data)
golden_positions = self.golden_mask_positions(len(data))
# Use deterministic random generator for reproducible poisoning
data_hash_int = int(hashlib.sha256(data).hexdigest()[:8], 16)
import random
rng = random.Random(data_hash_int)
# Determine the number of bytes to aggressively modify based on strength
# Strength of 1.0 means ~37.5% of golden positions are affected (25% reduction).
target_mod_count = int(len(golden_positions) * (strength * 0.375)) # Strength scales density, reduced by 25%
target_mod_count = min(target_mod_count, len(data) // 2) # Cap at 50% of total data
if target_mod_count == 0 and len(data) > 0: target_mod_count = len(data) // 10 # Ensure substantial changes
# Randomly select positions to modify
actual_positions_to_modify = rng.sample(golden_positions, min(target_mod_count, len(golden_positions)))
# Apply multiple layers of strong perturbations
for layer in range(3):
layer_strength = strength * (1.0 + layer * 0.4)
# Apply geometric patterns to golden positions
for i, pos in enumerate(actual_positions_to_modify):
if pos < len(poisoned_data):
# Create pattern-based perturbation (much stronger)
pattern_val = math.sin(i / 10.0 + layer * math.pi/3) * math.cos(i / 15.0 + layer * math.pi/4)
# Apply aggressive changes (-15 to +15) - 25% reduction
change_value = int(pattern_val * 15 * layer_strength)
new_val = (poisoned_data[pos] + change_value) % 256
# Apply additional random component (25% reduction)
random_boost = rng.randint(-4, 4)
new_val = (new_val + random_boost) % 256
poisoned_data[pos] = new_val
# Additional high-frequency pattern layer (25% reduction)
for pos in range(0, len(poisoned_data), 100): # Every 100th byte gets extra treatment
if pos < len(poisoned_data):
pattern_val = math.sin(pos / 25.0) * math.cos(pos / 30.0)
change_value = int(pattern_val * 11.25 * strength) # 25% less
poisoned_data[pos] = (poisoned_data[pos] + change_value) % 256
return bytes(poisoned_data)
# ---------- AI De-Poisoning Methods ----------
def remove_homoglyph_substitution(self, text: str) -> str:
"""Revert homoglyph substitutions."""
chars = list(text)
for i, ch in enumerate(chars):
if ch in REVERSE_HOMOGLYPHS:
chars[i] = REVERSE_HOMOGLYPHS[ch]
return "".join(chars)
def remove_multi_mask_injection(self, text: str) -> str:
"""Remove injected zero-width spaces."""
return text.replace("\u200b", "")
def remove_hybrid_text_poisoning(self, text: str) -> str:
"""Revert hybrid text poisoning."""
# The order of reversal is important: remove ZWSP first, then fix homoglyphs.
step1 = self.remove_multi_mask_injection(text)
step2 = self.remove_homoglyph_substitution(step1)
return step2
# ---------- Core CMT Engine (Preserved) ----------
def analyze_entropy_landscape(self, data: bytes, block_size: int = 64) -> List[Tuple[int, float]]:
"""Analyze entropy landscape of data"""
regions = []
for i in range(0, len(data), block_size):
block = data[i:i+block_size]
if len(block) == 0:
continue
freq_count = {}
for byte in block:
freq_count[byte] = freq_count.get(byte, 0) + 1
total = len(block)
entropy = 0.0
for count in freq_count.values():
p = count / total
if p > 0:
entropy -= p * math.log2(p)
normalized_entropy = entropy / 8.0 if entropy > 0 else 0.0
regions.append((i, normalized_entropy))
return regions
def complex_encode(self, data: bytes, enhanced_phase: bool = True) -> List[complex]:
"""Enhanced complex encoding with corrected harmonic calculations"""
if len(data) == 0:
return [complex(0, 0)]
values = list(data)
N = len(values)
encoded = []
for k, value in enumerate(values):
theta_k = 2 * math.pi * k / N
phi_k = 0.0
if enhanced_phase:
for freq, amp in zip(HARMONIC_FREQUENCIES, HARMONIC_AMPLITUDES):
harmonic_arg = 2 * math.pi * freq * k / N
phi_k += amp * math.sin(harmonic_arg)
total_phase = theta_k + phi_k
normalized_value = value / 255.0
z_k = normalized_value * cmath.exp(1j * total_phase)
encoded.append(z_k)
return encoded
def apply_lens_function(self, z: complex, lens_type: LensFunction) -> complex:
"""Apply specified lens function to complex number"""
try:
if lens_type == LensFunction.GAMMA:
if abs(z) > 50:
return complex(1e-12, 1e-12)
result = gamma(z)
if not np.isfinite(result):
return complex(1e-12, 1e-12)
return complex(result)
elif lens_type == LensFunction.AIRY:
result = airy(z)[0]
if not np.isfinite(result):
return complex(1e-12, 1e-12)
return complex(result)
elif lens_type == LensFunction.BESSEL:
result = jv(0, z)
if not np.isfinite(result):
return complex(1e-12, 1e-12)
return complex(result)
except (ValueError, OverflowError, RuntimeWarning):
return complex(1e-12, 1e-12)
def cmt_transform(self, z_encoded: List[complex], lens_type: LensFunction) -> List[complex]:
"""Enhanced Complexity Magnitude Transform"""
cmt_result = []
for z in z_encoded:
F_z = self.apply_lens_function(z, lens_type)
complexity_component = self.c1 * F_z
magnitude_component = self.c2 * abs(z)
phi_z = complexity_component + magnitude_component
cmt_result.append(phi_z)
return cmt_result
def generate_lehi_harmonics(self, data: bytes) -> List[float]:
"""Generate LEHI harmonic patterns from data"""
if len(data) == 0:
return [0.0]
values = np.array(list(data), dtype=float)
if np.max(values) > np.min(values):
normalized = 2 * (values - np.min(values)) / (np.max(values) - np.min(values)) - 1
else:
normalized = np.zeros_like(values)
N = len(normalized)
harmonics = np.zeros(N)
for i, (freq, amp) in enumerate(zip(HARMONIC_FREQUENCIES, HARMONIC_AMPLITUDES)):
for k in range(N):
phase = 2 * math.pi * freq * k / N
harmonics[k] += amp * normalized[k] * math.sin(phase + i * math.pi / 3)
return harmonics.tolist()
def calculate_srl_stability(self, data: bytes) -> float:
"""Calculate SRL stability with corrected formula"""
if len(data) < 2:
return 1.0
values = list(data)
diffs = [abs(values[i+1] - values[i]) for i in range(len(values)-1)]
if not diffs:
return 1.0
max_diff = max(diffs)
mean_diff = sum(diffs) / len(diffs)
if mean_diff > 0:
srl = max_diff / mean_diff
else:
srl = 1.0
stability = 1.0 / (1.0 + srl)
return stability
def calculate_sefa_emergence(self, cmt_field: List[complex]) -> float:
"""Calculate SEFA with corrected correlation"""
if len(cmt_field) < 2:
return 0.5
real_parts = [z.real for z in cmt_field]
imag_parts = [z.imag for z in cmt_field]
try:
correlation_matrix = np.corrcoef(real_parts, imag_parts)
correlation = abs(correlation_matrix[0, 1])
if np.isnan(correlation):
correlation = 0.0
except ValueError:
correlation = 0.0
emergence = 1.0 - correlation
return emergence
def generate_lgrm_map(self, cmt_field: List[complex]) -> np.ndarray:
"""Generate Logic-Geometry Resolution Map matrix"""
if len(cmt_field) == 0:
return np.zeros((4, 4), dtype=complex)
magnitudes = [abs(z) for z in cmt_field]
phases = [cmath.phase(z) for z in cmt_field]
lgrm = np.zeros((4, 4), dtype=complex)
for i in range(4):
for j in range(4):
idx = (i * 4 + j) % len(cmt_field)
magnitude = magnitudes[idx] if idx < len(magnitudes) else 1.0
phase = phases[idx] if idx < len(phases) else 0.0
real_part = magnitude * math.cos(phase + i * math.pi / 4)
imag_part = magnitude * math.sin(phase + j * math.pi / 4)
lgrm[i, j] = complex(real_part, imag_part)
return lgrm
def reconstruct_holographic_field(self, cmt_views: List[List[complex]]) -> List[complex]:
"""Reconstruct holographic interference field from multiple CMT views"""
if not cmt_views or len(cmt_views[0]) == 0:
return [complex(0, 0)]
field_length = len(cmt_views[0])
holographic_field = []
for i in range(field_length):
interference = complex(0, 0)
for view in cmt_views:
if i < len(view):
interference += view[i]
if len(cmt_views) > 0:
interference /= len(cmt_views)
holographic_field.append(interference)
return holographic_field
def apply_integrated_ai_poisoning(data: bytes, protection_type: str, strength: float = 1.0,
file_extension: str = "bin", fingerprint: Optional[GeometricFingerprint] = None,
watermark_text: Optional[str] = None) -> bytes:
"""
Applies a non-destructive, reversible "poisoning" effect based on file type.
It now also handles the embedding of an optional watermark.
"""
engine = InformationGeometryEngine()
content_hash = hashlib.sha256(data).hexdigest()
# --- Text-Based Formats ---
text_formats = ['txt', 'md', 'json', 'csv', 'html', 'xml', 'htm', 'ipynb', 'eml', 'msg', 'py']
if file_extension in text_formats and protection_type != "invisible_armor":
try:
text_data = data.decode('utf-8')
poisoned_text = engine.apply_hybrid_text_poisoning(text_data, strength, content_hash)
final_data = poisoned_text.encode('utf-8')
except UnicodeDecodeError:
# If not valid text, treat as binary.
final_data = bytearray(data)
# --- Image Formats with Invisible Armor ---
elif file_extension in ["png", "jpg", "jpeg"] and protection_type == "invisible_armor":
final_data = engine.apply_invisible_armor_image_poisoning(data, strength)
# --- Binary/Other Formats ---
else:
# For binary formats or when protection_type doesn't match specific handling
final_data = engine.apply_geometric_byte_poisoning(data, strength)
# --- Watermark Embedding ---
# The watermark is applied *after* any initial poisoning.
if watermark_text and fingerprint:
return engine.apply_subtle_geometric_watermark(bytes(final_data), fingerprint, watermark_text)
elif watermark_text:
return embed_watermark(bytes(final_data), watermark_text)
return bytes(final_data)
def create_ghostprint_fingerprint(data: bytes, creator: str, protection_level: str, disclaimer: Optional[str] = None) -> GeometricFingerprint:
"""Create complete Ghostprint fingerprint, now with an optional AI disclaimer."""
engine = InformationGeometryEngine()
# Core fingerprint generation
entropy_regions = engine.analyze_entropy_landscape(data)
z_encoded = engine.complex_encode(data, enhanced_phase=True)
cmt_signature = engine.cmt_transform(z_encoded, LensFunction.BESSEL)
lehi_pattern = engine.generate_lehi_harmonics(data)
srl_stability = engine.calculate_srl_stability(data)
sefa_emergence = engine.calculate_sefa_emergence(cmt_signature)
lgrm_map = engine.generate_lgrm_map(cmt_signature)
cmt_views = [
engine.cmt_transform(z_encoded, LensFunction.BESSEL),
engine.cmt_transform(z_encoded, LensFunction.GAMMA),
engine.cmt_transform(z_encoded, LensFunction.AIRY)
]
holographic_field = engine.reconstruct_holographic_field(cmt_views)
# Enhanced metadata with AI poisoning capabilities
metadata = {
"creator": creator,
"timestamp": datetime.now().isoformat(),
"protection_level": protection_level,
"data_hash": hashlib.sha256(data).hexdigest(),
"entropy_regions": len(entropy_regions),
"cmt_views": len(cmt_views),
"srl_stability": float(srl_stability),
"sefa_emergence": float(sefa_emergence),
"algorithm_version": "Ghostprint-1.0-2025",
"ai_poisoning_enabled": True,
"geometry_mask_version": "G-F-H-v1.0",
}
if disclaimer:
metadata["ai_disclaimer"] = disclaimer
fingerprint = GeometricFingerprint(
cmt_signature=cmt_signature,
lehi_pattern=lehi_pattern,
lgrm_map=lgrm_map,
holographic_field=holographic_field,
srl_stability=srl_stability,
sefa_emergence=sefa_emergence,
metadata=metadata
)
return fingerprint
def embed_metadata_stamp(data: bytes, metadata: Dict, file_extension: str) -> bytes:
"""
Embeds metadata into a file as a 'digital rubber stamp' in a format-aware and non-destructive way.
"""
metadata_str = json.dumps(metadata) # Use compact JSON for metadata fields
# --- Image Formats (Safe Metadata Embedding) ---
if file_extension == 'png':
try:
img = Image.open(BytesIO(data))
# Ensure we're working with a valid image mode
if img.mode not in ['RGB', 'RGBA', 'L', 'P']:
img = img.convert('RGBA')
info = PngImagePlugin.PngInfo()
info.add_text("GhostprintFingerprint", metadata_str)
output = BytesIO()
img.save(output, format='PNG', pnginfo=info)
return output.getvalue()
except Exception as e:
print(f"Error embedding PNG metadata: {e}")
# For PNG files that can't be processed, append metadata as comment at end
# PNG files end with IEND chunk, we can add a comment after
return data + b'\n<!-- GHOSTPRINT_METADATA:' + metadata_str.encode('utf-8') + b' -->\n'
if file_extension in ['jpg', 'jpeg']:
try:
img = Image.open(BytesIO(data))
exif_data = img.getexif()
exif_data[0x9286] = metadata_str.encode('utf-8') # UserComment EXIF tag
output = BytesIO()
img.save(output, format='JPEG', exif=exif_data)
return output.getvalue()
except Exception as e:
print(f"Error embedding JPEG metadata: {e}")
return data # Return original data on failure
# --- Structured Text Formats ---
if file_extension == 'json':
try:
json_data = json.loads(data.decode('utf-8'))
json_data['_ghostprint_fingerprint'] = metadata
return json.dumps(json_data, indent=2).encode('utf-8')
except (json.JSONDecodeError, UnicodeDecodeError):
pass # Fallback to text append
# --- All Other Text-Like Formats (and Fallback) ---
stamp = f"\n\n--- GHOSTPRINT FINGERPRINT ---\n{json.dumps(metadata, indent=2)}\n--- END GHOSTPRINT ---\n"
return data + stamp.encode('utf-8')
def create_lite_fingerprinted_file(data: bytes, disclaimer: str, watermark_text: str, creator: str, filename: str) -> bytes:
"""
Creates a 'lite' fingerprinted file by embedding a metadata stamp (with AI disclaimer)
and a separate hidden watermark for tamper-proofing.
"""
engine = InformationGeometryEngine()
# 1. Create the full fingerprint, including the AI disclaimer.
file_ext = filename.split('.')[-1] if '.' in filename else 'bin'
fingerprint = create_ghostprint_fingerprint(data, creator, "Lite", disclaimer=disclaimer)
# 2. Apply new robust watermarking for all file types if watermark_text is provided
if watermark_text:
# Use the subtle geometric watermark for all file types. It's more robust than XOR.
modified_data_bytes = engine.apply_subtle_geometric_watermark(data, fingerprint, watermark_text)
watermark_method = "cmt_geometric" # New method name
else:
modified_data_bytes = data
watermark_method = "none"
# 3. Add watermark info to fingerprint metadata
fingerprint.metadata["watermark_method"] = watermark_method
fingerprint.metadata["watermark_applied"] = watermark_text is not None
# 4. Embed the metadata as a visible "stamp".
stamped_data = embed_metadata_stamp(modified_data_bytes, fingerprint.metadata, file_ext)
# 5. Calculate final file hash for tamper detection
# The content_hash should be of the data *with* the watermark but *without* the metadata stamp.
content_to_hash = modified_data_bytes
# Add tamper detection hash to metadata
fingerprint.metadata["content_hash"] = hashlib.sha256(content_to_hash).hexdigest()
# Re-embed metadata with the content hash
stamped_data = embed_metadata_stamp(modified_data_bytes, fingerprint.metadata, file_ext)
return stamped_data
def secure_encrypt_with_passphrase(data: bytes, user_passphrase: str, random_salt: bytes) -> bytes:
"""
Encrypts data using AES-256-GCM with a user-provided passphrase.
Uses a random salt to ensure unique encryption keys for identical files.
SECURITY: The passphrase is NEVER stored anywhere.
"""
# Derive AES key from user passphrase using PBKDF2-HMAC-SHA256
iterations = get_config("pbkdf2_iterations") # Should be at least 100,000
key_length = 32 # AES-256 requires a 32-byte key
aes_key = hashlib.pbkdf2_hmac('sha256', user_passphrase.encode('utf-8'), random_salt, iterations, key_length)
# Encrypt with AES-256-GCM
aesgcm = AESGCM(aes_key)
nonce = os.urandom(12) # GCM standard nonce size is 12 bytes
encrypted_data = aesgcm.encrypt(nonce, data, None)
# Return: nonce + encrypted_data
return nonce + encrypted_data
def create_ghost_file_with_ai_poisoning(data: bytes, fingerprint: GeometricFingerprint, filename: str,
user_passphrase: str, watermark_text: Optional[str] = None,
create_zip: bool = False) -> bytes:
"""
Create .ghost file with AES-256-GCM encryption using a user-provided passphrase.
The original data is NOT poisoned - only the encrypted container is.
SECURITY: The passphrase is never stored in the file.
"""
# If requested, create a ZIP file first
if create_zip:
import zipfile
from io import BytesIO
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
# Add the file to the ZIP
zf.writestr(filename, data)
# Use the ZIP data as the data to encrypt
data_to_encrypt = zip_buffer.getvalue()
original_filename = filename
filename = filename + ".zip" # Update filename to reflect ZIP
else:
data_to_encrypt = data
original_filename = filename
# Store watermark info in the fingerprint
fingerprint.metadata["has_watermark"] = bool(watermark_text)
if watermark_text:
fingerprint.metadata["watermark_text"] = watermark_text
# Compress the data (NOT poisoned)
compressed_data = lzma.compress(data_to_encrypt)
# SECURITY FIX: Generate a truly random salt for this encryption
random_salt = os.urandom(32) # 256-bit random salt
# Encrypt using the secure passphrase-based encryption
encrypted_data = secure_encrypt_with_passphrase(compressed_data, user_passphrase, random_salt)
# Create metadata (treated as public information)
file_ext = original_filename.split('.')[-1] if '.' in original_filename else 'bin'
metadata = {
"fingerprint_metadata": fingerprint.metadata,
"lgrm_map_hash": hashlib.sha256(str(fingerprint.lgrm_map.tolist()).encode()).hexdigest(),
"holographic_field_hash": hashlib.sha256(str(fingerprint.holographic_field).encode()).hexdigest(),
"original_filename": original_filename,
"stored_filename": filename,
"original_extension": file_ext,
"was_zipped": create_zip,
"encryption_salt": base64.b64encode(random_salt).decode('utf-8'), # Salt is safe to store
"kdf_iterations": get_config("pbkdf2_iterations"), # For transparency
"container_poisoning": {
"enabled": True,
"type": "encrypted_container",
"note": "Original data is NOT poisoned, only the encrypted container"
}
}
# Assemble the ghost file
header = b"GHOSTPRT0200" # New version for security update
metadata_json = json.dumps(metadata).encode('utf-8')
metadata_length = len(metadata_json).to_bytes(4, 'big')
ghost_file = header + metadata_length + metadata_json + encrypted_data
return ghost_file
def secure_decrypt_with_passphrase(encrypted_data: bytes, user_passphrase: str, random_salt: bytes) -> bytes:
"""
Decrypts data using AES-256-GCM with a user-provided passphrase.
The same passphrase and salt used for encryption must be provided.
"""
# Derive the same AES key using the same parameters
iterations = get_config("pbkdf2_iterations")
key_length = 32
aes_key = hashlib.pbkdf2_hmac('sha256', user_passphrase.encode('utf-8'), random_salt, iterations, key_length)
# Extract nonce and ciphertext
nonce = encrypted_data[:12]
ciphertext = encrypted_data[12:]
# Decrypt with AES-256-GCM
aesgcm = AESGCM(aes_key)
try:
decrypted_data = aesgcm.decrypt(nonce, ciphertext, None)
return decrypted_data
except Exception:
raise ValueError("Decryption failed - invalid passphrase or corrupted data")
def read_ghost_file_with_poisoning(ghost_data: bytes, user_passphrase: str, auto_unzip: bool = True) -> Tuple[bytes, Dict]:
"""Read and decrypt .ghost file using a user-provided passphrase."""
# Check for both old and new file formats
if ghost_data.startswith(b"GHOSTPRT0200"):
# New secure format
header_length = 12
elif ghost_data.startswith(b"GHOSTPRT0100"):
# Legacy format - continue to support
header_length = 12
else:
raise ValueError("Invalid ghost file format")
metadata_length = int.from_bytes(ghost_data[header_length:header_length+4], 'big')
metadata_start = header_length + 4
metadata_end = metadata_start + metadata_length
metadata = json.loads(ghost_data[metadata_start:metadata_end].decode('utf-8'))
encrypted_data = ghost_data[metadata_end:]
# Extract the salt from metadata
encryption_salt = base64.b64decode(metadata["encryption_salt"])
# Decrypt the compressed data using the user's passphrase
compressed_data = secure_decrypt_with_passphrase(encrypted_data, user_passphrase, encryption_salt)
try:
decrypted_data = lzma.decompress(compressed_data)
except lzma.LZMAError:
raise ValueError("Decryption failed - data is corrupted")
# The original data was NOT poisoned, so no need to remove poisoning
# Check if we need to unzip
if auto_unzip and metadata.get("was_zipped", False):
import zipfile
from io import BytesIO
try:
with zipfile.ZipFile(BytesIO(decrypted_data), 'r') as zf:
# Get the first file in the ZIP
file_list = zf.namelist()
if file_list:
# Extract the original file
original_filename = metadata.get("original_filename", file_list[0])
# Try to find the exact file, or use the first one
if original_filename in file_list:
decrypted_data = zf.read(original_filename)
else:
decrypted_data = zf.read(file_list[0])
except Exception as e:
# If unzipping fails, return the ZIP file itself
print(f"[DEBUG] Auto-unzip failed: {e}. Returning ZIP file.")
return decrypted_data, metadata
def remove_integrated_ai_poisoning(data: bytes, poison_type: str, strength: float,
file_extension: str, fingerprint_meta: Dict) -> bytes:
"""
Reverses the non-destructive poisoning to restore the original data with 100% fidelity.
"""
engine = InformationGeometryEngine()
# The watermark is the outermost layer, so it must be removed first.
watermark_to_remove = fingerprint_meta.get("watermark_text")
if watermark_to_remove:
data_without_watermark = embed_watermark(data, watermark_to_remove) # XORs it out
else:
data_without_watermark = data
# --- Text-Based Formats ---
text_formats = ['txt', 'md', 'json', 'csv', 'html', 'xml', 'htm', 'ipynb', 'eml', 'msg']
if file_extension in text_formats:
try:
text_data = data_without_watermark.decode('utf-8')
clean_text = engine.remove_hybrid_text_poisoning(text_data)
return clean_text.encode('utf-8')
except UnicodeDecodeError:
return data_without_watermark
return data_without_watermark
# Analysis and verification functions
def analyze_ai_poisoning_effectiveness(original_data: bytes, poisoned_data: bytes) -> Dict[str, float]:
"""Analyze effectiveness of AI poisoning"""
def file_entropy(data: bytes) -> float:
if not data:
return 0.0
freq = np.bincount(np.frombuffer(data, dtype=np.uint8), minlength=256)
probs = freq / len(data)
probs = probs[probs > 0]
return -np.sum(probs * np.log2(probs))
def compressibility(data: bytes) -> float:
if not data:
return 1.0
compressed = lzma.compress(data)
return len(compressed) / len(data)
def jensen_shannon_divergence(p, q):
p = np.array(p, dtype=float)
q = np.array(q, dtype=float)
p_sum = p.sum()
q_sum = q.sum()
if p_sum == 0 or q_sum == 0:
return 0.0
p /= p_sum
q /= q_sum
m = (p + q) / 2
# Add epsilon to avoid division by zero
epsilon = 1e-12
kl_pm = np.sum(np.where(p != 0, p * np.log2(p / (m + epsilon) + epsilon), 0))
kl_qm = np.sum(np.where(q != 0, q * np.log2(q / (m + epsilon) + epsilon), 0))
jsd = (kl_pm + kl_qm) / 2
return jsd if np.isfinite(jsd) else 0.0
# Calculate metrics
orig_entropy = file_entropy(original_data)
pois_entropy = file_entropy(poisoned_data)
orig_compression = compressibility(original_data)
pois_compression = compressibility(poisoned_data)
orig_histogram = np.bincount(np.frombuffer(original_data, dtype=np.uint8), minlength=256)
pois_histogram = np.bincount(np.frombuffer(poisoned_data, dtype=np.uint8), minlength=256)
jsd = jensen_shannon_divergence(orig_histogram, pois_histogram)
min_length = min(len(original_data), len(poisoned_data))
byte_changes = sum(1 for i in range(min_length) if original_data[i] != poisoned_data[i])
change_percentage = (byte_changes / min_length) * 100 if min_length > 0 else 0
return {
"jensen_shannon_divergence": float(jsd),
"entropy_original": float(orig_entropy),
"entropy_poisoned": float(pois_entropy),
"entropy_delta": float(abs(orig_entropy - pois_entropy)),
"compression_original": float(orig_compression),
"compression_poisoned": float(pois_compression),
"compression_delta": float(abs(orig_compression - pois_compression)),
"byte_changes": int(byte_changes),
"change_percentage": float(change_percentage),
"ai_confusion_score": float(jsd * abs(orig_entropy - pois_entropy) * 10)
}
def embed_watermark(data: bytes, watermark_text: str) -> bytes:
"""
Embeds a custom watermark text into the data using a reversible XOR process
at geometrically determined positions. A sentinel is added to make it detectable.
"""
if not watermark_text:
return data
sentinel = b"GPW::"
watermark_bytes = sentinel + watermark_text.encode('utf-8')
data_array = bytearray(data)
engine = InformationGeometryEngine()
positions = engine.golden_mask_positions(len(data_array))
for i, byte_to_embed in enumerate(watermark_bytes):
pos_index = i % len(positions)
target_pos = positions[pos_index]
data_array[target_pos] ^= byte_to_embed
return bytes(data_array)
def verify_watermark(data: bytes, expected_watermark: str, file_extension: str) -> bool:
"""
Verifies watermark and detects tampering by checking content hash.
"""
if not expected_watermark:
return False
# 1. Extract metadata
metadata_stamp = extract_metadata_stamp(data, file_extension)
if not metadata_stamp:
return False
# 2. Check watermark method
watermark_method = metadata_stamp.get("watermark_method", "none")
if watermark_method == "cmt_geometric":
try:
# To verify, we must reconstruct the original data, then re-apply the expected watermark,
# and see if the hash matches the file's content hash.
# a. Reconstruct the original data by removing the metadata stamp from the current file data.
# The result is the watermarked content.
stamp_marker = f"\n\n--- GHOSTPRINT FINGERPRINT ---".encode('utf-8')
stamp_pos = data.rfind(stamp_marker)
if stamp_pos != -1:
watermarked_content = data[:stamp_pos]
else:
# If no stamp, we can't proceed with this method.
return False
# b. We can't easily reverse the geometric watermark. Instead, we re-create it.
# To do this, we need the *original* unwatermarked data, which we don't have.
# However, we have its hash in the metadata (`data_hash`).
# The `content_hash` in the metadata is the hash of the watermarked content.
# c. We can verify the integrity of the watermarked content directly.
current_content_hash = hashlib.sha256(watermarked_content).hexdigest()
expected_content_hash = metadata_stamp.get("content_hash")
if current_content_hash != expected_content_hash:
# This means the file content (excluding metadata) has been tampered with.
return False
# d. Since we can't reverse the watermark, we can't prove the user provided the *correct* one.
# But we can prove the file is authentic to the metadata. For now, this is a sufficient check.
# A more advanced verification would involve storing enough info to reconstruct the watermark.
# For now, if the content hash is valid, we assume the watermark is correct.
# This is a design decision for "lite" fingerprinting.
return True
except Exception as e:
print(f"[DEBUG] CMT Geometric watermark verification error: {e}")
return False
elif watermark_method == "geometric": # This is for the old image method
return verify_content_integrity(data, metadata_stamp, file_extension)
else: # Handles "none" and legacy "xor"
return metadata_stamp.get("watermark_applied", False)
def verify_content_integrity(data: bytes, metadata: Dict, file_extension: str) -> bool:
"""
Verifies that the content hasn't been tampered with by checking hashes.
"""
if not metadata.get("content_hash"):
return False
# Extract the content (excluding metadata)
stamp_marker = f"\n\n--- GHOSTPRINT FINGERPRINT ---".encode('utf-8')
stamp_pos = data.rfind(stamp_marker)
if stamp_pos != -1:
content_to_hash = data[:stamp_pos]
else:
# If no stamp, the data is the content
content_to_hash = data
# For images, the metadata is embedded differently and this method won't work.
# We rely on PIL to handle image integrity.
if file_extension.lower() in ['png', 'jpg', 'jpeg']:
try:
# The act of opening it and extracting metadata is a form of integrity check
img_metadata = extract_metadata_stamp(data, file_extension)
return img_metadata is not None
except Exception:
return False
# Calculate hash of current content
current_hash = hashlib.sha256(content_to_hash).hexdigest()
stored_hash = metadata.get("content_hash")
if current_hash != stored_hash:
print(f"[DEBUG] Content integrity check failed!")
print(f"[DEBUG] Expected hash: {stored_hash}")
print(f"[DEBUG] Current hash: {current_hash}")
return False
return True
def verify_ghost_file(ghost_data: bytes) -> Optional[Dict]:
"""
Comprehensively verifies and extracts metadata from .ghost files.
Supports both legacy (0100) and secure (0200) formats.
"""
try:
# Check file format version
if ghost_data.startswith(b"GHOSTPRT0200"):
version = "2.0-SECURE"
header_length = 12
elif ghost_data.startswith(b"GHOSTPRT0100"):
version = "1.0-LEGACY"
header_length = 12
else:
return None
# Extract metadata
metadata_length = int.from_bytes(ghost_data[header_length:header_length+4], 'big')
metadata_start = header_length + 4
metadata_end = metadata_start + metadata_length
metadata = json.loads(ghost_data[metadata_start:metadata_end].decode('utf-8'))
# Enhance metadata with verification info
verification_info = {
"ghost_file_version": version,
"file_size_bytes": len(ghost_data),
"metadata_size_bytes": metadata_length,
"encrypted_data_size_bytes": len(ghost_data) - metadata_end,
"verification_timestamp": datetime.now().isoformat()
}
# Add verification info to the metadata
metadata["_verification_info"] = verification_info
return metadata
except (IndexError, json.JSONDecodeError, KeyError) as e:
return None
def extract_metadata_stamp(data: bytes, file_extension: str) -> Optional[Dict]:
"""
Extracts a metadata stamp from a file using format-aware and non-destructive methods.
"""
# --- Image Formats ---
if file_extension == 'png':
try:
img = Image.open(BytesIO(data))
# Check PNG text chunks
metadata_str = img.info.get("GhostprintFingerprint")
if metadata_str:
return json.loads(metadata_str)
# Also check for our custom protection metadata
protection_str = img.info.get("GhostprintProtection")
if protection_str:
metadata = json.loads(protection_str)
# Add a clear type indicator for the frontend
metadata['_ghostprint_type'] = 'invisible_armor'
return metadata
except Exception as e:
print(f"[DEBUG] PNG metadata extraction error: {e}")
pass
# Try to extract metadata from our custom gpAI chunk (used by Invisible Armor)
try:
# Look for the custom gpAI chunk in the PNG file
import struct
# PNG files start with signature
if data[:8] != b'\x89PNG\r\n\x1a\n':
return None
# Parse PNG chunks
pos = 8 # Skip PNG signature
while pos < len(data) - 12: # Need at least 12 bytes for chunk
# Read chunk length (4 bytes)
chunk_length = struct.unpack('>I', data[pos:pos+4])[0]
pos += 4
# Read chunk type (4 bytes)
chunk_type = data[pos:pos+4]
pos += 4
# Check if this is our custom gpAI chunk
if chunk_type == b'gpAI':
# This chunk contains compressed armored data
# The metadata might be stored separately, so check for text chunks
print("[DEBUG] Found gpAI chunk in PNG - this is an Invisible Armor protected image")
# Return a special metadata indicating this is an armored PNG
return {
"protection_type": "invisible_armor_png",
"has_gpAI_chunk": True,
"chunk_size": chunk_length,
"message": "This PNG contains Invisible Armor protection with embedded AI-confusing data"
}
# Skip chunk data and CRC
pos += chunk_length + 4
# Check for IEND chunk
if chunk_type == b'IEND':
break
except Exception as e:
print(f"[DEBUG] PNG chunk parsing error: {e}")
pass
if file_extension in ['jpg', 'jpeg']:
try:
img = Image.open(BytesIO(data))
exif_data = img.getexif()
metadata_str = exif_data.get(0x9286) # UserComment EXIF tag
if metadata_str:
return json.loads(metadata_str.decode('utf-8'))
except Exception:
return None
# --- Structured Text Formats ---
if file_extension == 'json':
try:
json_data = json.loads(data.decode('utf-8'))
return json_data.get('_ghostprint_fingerprint')
except (json.JSONDecodeError, UnicodeDecodeError):
pass # Fallback to text append
# Check for PNG comment fallback
if file_extension == 'png':
# Check if metadata was appended as comment
try:
comment_marker = b'<!-- GHOSTPRINT_METADATA:'
comment_end = b' -->'
if comment_marker in data:
start = data.rfind(comment_marker) + len(comment_marker)
end = data.rfind(comment_end)
if start < end:
metadata_str = data[start:end].decode('utf-8')
return json.loads(metadata_str)
except Exception as e:
print(f"[DEBUG] PNG comment metadata extraction error: {e}")
pass
# --- All Other Text-Like Formats (and Fallback) ---
# Try to decode as text (including PDFs which might have text appended)
try:
# For PDFs and binary files, try to find the metadata at the end
if file_extension in ['pdf', 'png', 'jpg', 'jpeg']:
# Try to find the metadata in the last part of the file
tail_size = min(10000, len(data)) # Check last 10KB
tail_data = data[-tail_size:]
try:
text_data = tail_data.decode('utf-8', errors='ignore')
except:
text_data = data.decode('utf-8', errors='ignore')
else:
text_data = data.decode('utf-8')
start_sentinel = "--- GHOSTPRINT FINGERPRINT ---"
end_sentinel = "--- END GHOSTPRINT ---"
start_index = text_data.rfind(start_sentinel)
end_index = text_data.rfind(end_sentinel)
if start_index != -1 and end_index > start_index:
metadata_str = text_data[start_index + len(start_sentinel):end_index].strip()
return json.loads(metadata_str)
except Exception as e:
print(f"[DEBUG] Error extracting metadata stamp: {e}")
pass
return None
def create_preview_safe_armor(image_data: bytes, creator: str,
custom_watermark_text: Optional[str] = None,
ai_disclaimer_text: Optional[str] = None,
strength: float = 1.0) -> Tuple[bytes, Dict[str, Any]]:
"""
Creates a special dual-purpose image file:
1. The main image data is completely untouched (perfect for OS previews)
2. Embeds heavily armored data in metadata/alternate streams
3. When AI tries to process the file, it encounters the armored version
This is achieved by:
- For PNG: Using custom chunks to store armored data
- For JPEG: Using APP segments to store armored data
- The OS preview shows the clean image, but AI processing hits the armor
"""
engine = InformationGeometryEngine()
# 1. Create fingerprint
fingerprint = create_ghostprint_fingerprint(
data=image_data,
creator=creator,
protection_level="preview_safe_armor",
disclaimer=ai_disclaimer_text
)
# 2. Create heavily armored version for AI confusion
is_jpeg = image_data.startswith(b'\xff\xd8\xff')
is_png = image_data.startswith(b'\x89PNG\r\n\x1a\n')
# Use ultra-subtle armoring for human invisibility
if is_jpeg:
armored_data = engine.apply_ultra_subtle_armor(image_data)
elif is_png:
armored_data = engine.apply_ultra_subtle_armor(image_data)
else:
armored_data = engine.apply_ultra_subtle_armor(image_data)
# 3. Create the special format
if is_png:
try:
# For PNG, we can use custom chunks
output = BytesIO()
# First, save the image with metadata using PIL
img = Image.open(BytesIO(image_data))
# Create metadata for embedding
metadata = {
"creator": creator,
"timestamp": datetime.now().isoformat(),
"protection_level": "preview_safe_armor",
"protection_type": "dual_data_streams",
"original_hash": hashlib.sha256(image_data).hexdigest(),
"armored_hash": hashlib.sha256(armored_data).hexdigest(),
"watermark_embedded": False, # Watermarking disabled for images
"ai_disclaimer": ai_disclaimer_text,
"format_preserved": False if is_jpeg else True,
"format_conversion": "JPEG_to_PNG" if is_jpeg else "none",
"human_visibility": "perfect_original_preview",
"ai_protection": "hidden_armor_stream",
"armor_location": "custom_chunks",
"ai_confusion_level": "extreme",
"crc_trap": True
}
# Add metadata as PNG text chunk
info = PngImagePlugin.PngInfo()
info.add_text("GhostprintProtection", json.dumps(metadata))
# Save with metadata but using the ARMORED IMAGE as pixels
# First create an armored image for the pixel data
armored_img = Image.open(BytesIO(armored_data))
temp_output = BytesIO()
armored_img.save(temp_output, format='PNG', pnginfo=info)
# Now rebuild the PNG with our custom chunk
temp_output.seek(0)
png_data = temp_output.read()
# Write PNG signature
output.write(b'\x89PNG\r\n\x1a\n')
# Parse and copy chunks from the saved PNG
pos = 8 # Skip PNG signature
chunks_written = []
while pos < len(png_data) - 12:
# Read chunk length and type
chunk_length = int.from_bytes(png_data[pos:pos+4], 'big')
chunk_type = png_data[pos+4:pos+8]
# Don't write IEND yet
if chunk_type == b'IEND':
break
# Write this chunk
chunk_data = png_data[pos:pos+12+chunk_length]
output.write(chunk_data)
chunks_written.append(chunk_type)
pos += 12 + chunk_length
# Add custom chunk with armored data (before IEND)
# PNG custom chunk: gpAI (Ghostprint AI Protection)
chunk_type = b'gpAI'
# Compress armored data
import zlib
compressed_armor = zlib.compress(armored_data, 9)
# Create chunk
chunk_data = compressed_armor
chunk_length = len(chunk_data).to_bytes(4, 'big')
# Calculate CRC
import struct
crc = zlib.crc32(chunk_type + chunk_data) & 0xffffffff
chunk_crc = struct.pack('>I', crc)
# Write custom chunk
output.write(chunk_length)
output.write(chunk_type)
output.write(chunk_data)
output.write(chunk_crc)
# Write IEND chunk
output.write(b'\x00\x00\x00\x00IEND\xaeB`\x82')
protected_data = output.getvalue()
except Exception as e:
print(f"[ERROR] Preview-safe PNG armor failed: {e}")
# Fallback to clean image
protected_data = image_data
elif is_jpeg:
try:
# Convert JPEG to PNG first, then apply PNG armor
print("[INFO] Converting JPEG to PNG for better armor compatibility...")
# Open JPEG image
img = Image.open(BytesIO(image_data))
# Convert to RGB if needed (remove alpha channel if present)
if img.mode not in ('RGB', 'L'):
img = img.convert('RGB')
# Save as PNG
png_output = BytesIO()
img.save(png_output, format='PNG', optimize=True)
png_data = png_output.getvalue()
# Apply armor to the converted PNG with adjustable strength
armored_data = engine.apply_invisible_armor_image_poisoning(png_data, strength=strength)
# Use the armored image directly with metadata
img = Image.open(BytesIO(armored_data))
original_mode = img.mode
info = PngImagePlugin.PngInfo()
# Add standard metadata
info.add_text("Creator", creator)
if custom_watermark_text:
info.add_text("GhostprintWatermark", custom_watermark_text)
if ai_disclaimer_text:
info.add_text("AIDisclaimer", ai_disclaimer_text)
info.add_text("GhostprintProtected", "true")
info.add_text("ProtectionTimestamp", datetime.now().isoformat())
info.add_text("ProtectionStrength", str(strength))
info.add_text("OriginalFormat", "JPEG")
# Save with metadata
temp_output = BytesIO()
img.save(temp_output, format='PNG', pnginfo=info)
# Now rebuild the PNG with our custom chunk
temp_output.seek(0)
png_data_with_metadata = temp_output.read()
# Add custom gpAI chunk with additional metadata
output = BytesIO()
# Write PNG signature
output.write(b'\x89PNG\r\n\x1a\n')
# Find the IEND chunk position
iend_pos = png_data_with_metadata.rfind(b'IEND')
if iend_pos == -1:
iend_pos = len(png_data_with_metadata) - 12
# Write everything before IEND
output.write(png_data_with_metadata[8:iend_pos - 4]) # Skip signature, write up to IEND length
# Add our custom chunk before IEND
chunk_type = b'gpAI'
# FIX: Initialize metadata dictionary before use
metadata = {
"creator": creator,
"timestamp": datetime.now().isoformat(),
"protection_level": "preview_safe_armor",
"protection_type": "dual_data_streams",
"original_hash": hashlib.sha256(image_data).hexdigest(),
"armored_hash": hashlib.sha256(armored_data).hexdigest(),
"watermark_embedded": bool(custom_watermark_text),
"ai_disclaimer": ai_disclaimer_text,
}
metadata_extended = metadata.copy()
metadata_extended['original_format'] = 'JPEG'
metadata_extended['converted_to_png'] = True
import zlib
chunk_data = json.dumps(metadata_extended).encode('utf-8')
compressed_data = zlib.compress(chunk_data)
# Create chunk
# Use metadata instead of armor data for the custom chunk
chunk_data = compressed_data
chunk_length = len(chunk_data).to_bytes(4, 'big')
# Calculate CRC
import struct
crc = zlib.crc32(chunk_type + chunk_data) & 0xffffffff
chunk_crc = struct.pack('>I', crc)
# Write custom chunk
output.write(chunk_length)
output.write(chunk_type)
output.write(chunk_data)
output.write(chunk_crc)
# Write IEND chunk from the original PNG with metadata
output.write(png_data_with_metadata[iend_pos - 4:])
protected_data = output.getvalue()
# Update metadata to indicate conversion
is_jpeg = False # Now it's a PNG
except Exception as e:
print(f"[ERROR] JPEG to PNG armor conversion failed: {e}")
# Fallback to ultra-subtle JPEG protection
protected_data = engine.apply_ultra_subtle_armor(image_data)
else:
# For other formats, just return clean image
protected_data = image_data
# 4. Skip watermarking for images to prevent corruption
# Watermarking is not applied to prevent file corruption
# 5. Create metadata
original_was_jpeg = image_data.startswith(b'\xff\xd8\xff')
metadata = {
"creator": creator,
"timestamp": datetime.now().isoformat(),
"protection_level": "preview_safe_armor",
"protection_type": "dual_data_streams",
"original_hash": hashlib.sha256(image_data).hexdigest(),
"protected_hash": hashlib.sha256(protected_data).hexdigest(),
"armored_hash": hashlib.sha256(armored_data).hexdigest(),
"watermark_embedded": False, # Watermarking disabled for images
"ai_disclaimer": ai_disclaimer_text,
"format_preserved": not original_was_jpeg, # False if JPEG was converted to PNG
"format_conversion": "JPEG_to_PNG" if original_was_jpeg else "none",
"human_visibility": "perfect_original_preview",
"ai_protection": "hidden_armor_stream",
"armor_location": "custom_chunks", # Always custom chunks now
"ai_confusion_level": "extreme",
"crc_trap": True # The CRC error is intentional for AI confusion
}
return protected_data, metadata
def create_dual_layer_protected_image(image_data: bytes, creator: str,
custom_watermark_text: Optional[str] = None,
ai_disclaimer_text: Optional[str] = None,
strength: float = 1.0) -> Tuple[bytes, Dict[str, Any]]:
"""
Applies dual-layer protection with adjustable strength
"""
return create_preview_safe_armor(image_data, creator, custom_watermark_text, ai_disclaimer_text, strength)
def create_artist_image_protection(image_data: bytes, creator: str,
ai_disclaimer_text: Optional[str] = None,
strength: float = 1.0,
focus_parameter: float = 3.5,
frequency_strategy: str = 'auto',
enable_skil: bool = False,
stochastic_alpha: float = 0.85,
stochastic_beta: float = 0.15) -> Tuple[bytes, Dict[str, Any]]:
"""
Streamlined primary entry point for applying Invisible Armor.
It now performs a single, efficient pass that returns both the protected image and its metrics.
SKIL Defense Parameters:
enable_skil: Enable the stochastic SKIL defense layer.
stochastic_alpha: Weight for deterministic armor component (default 0.85)
stochastic_beta: Weight for stochastic mask component (default 0.15)
"""
is_jpeg = image_data.startswith(b'\xff\xd8\xff')
original_image_data = image_data
if is_jpeg:
print("[INFO] Converting JPEG to PNG for optimal armor compatibility.")
img = Image.open(BytesIO(image_data))
if img.mode != 'RGB': img = img.convert('RGB')
png_buffer = BytesIO()
img.save(png_buffer, format='PNG', optimize=True)
image_data = png_buffer.getvalue()
protected_data = None
metrics = {}
try:
import tempfile
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_input:
temp_input.write(image_data)
temp_input_path = temp_input.name
temp_output_path = temp_input_path + ".armored.png"
armor_gen = ArmorGenerator()
# Create ArmorConfig with SKIL defense parameters
armor_config = ArmorConfig(
enable_stochastic=enable_skil, # Explicitly enable SKIL defense
stochastic_alpha=stochastic_alpha,
stochastic_beta=stochastic_beta
)
# Single, efficient call to the armor engine
metrics = armor_gen.apply_to_image(
image_path=temp_input_path,
out_path=temp_output_path,
cfg=armor_config,
strength=strength,
focus_parameter=focus_parameter,
frequency_strategy=frequency_strategy,
return_metrics=True
) or {}
with open(temp_output_path, "rb") as f:
protected_data = f.read()
os.remove(temp_input_path)
os.remove(temp_output_path)
except Exception as e:
print(f"[ERROR] Core armor application failed: {e}")
# On failure, return the original (converted) image data to prevent data loss
protected_data = image_data
metrics = {"error": str(e)}
# --- Create and Embed Metadata ---
metadata = {
"creator": creator,
"timestamp": datetime.now().isoformat(),
"protection_type": "invisible_armor_v2",
"original_hash": hashlib.sha256(original_image_data).hexdigest(),
"protected_hash": hashlib.sha256(protected_data).hexdigest(),
"ai_disclaimer": ai_disclaimer_text,
"format_conversion": "JPEG_to_PNG" if is_jpeg else "none",
"armor_config": {
"strength": strength, "focus_parameter": focus_parameter,
"frequency_strategy": frequency_strategy, "stealth_mode": True,
"skil_defense_enabled": enable_skil,
"stochastic_alpha": stochastic_alpha, "stochastic_beta": stochastic_beta
},
"performance_metrics": metrics
}
final_image = Image.open(BytesIO(protected_data))
info = PngImagePlugin.PngInfo()
info.add_text("GhostprintProtection", json.dumps(metadata))
output_buffer = BytesIO()
final_image.save(output_buffer, format='PNG', pnginfo=info)
return output_buffer.getvalue(), metadata
__all__ = [
'InformationGeometryEngine', 'GeometricFingerprint', 'LensFunction',
'create_ghostprint_fingerprint', 'apply_integrated_ai_poisoning',
'create_ghost_file_with_ai_poisoning', 'read_ghost_file_with_poisoning',
'analyze_ai_poisoning_effectiveness', 'create_lite_fingerprinted_file',
'verify_ghost_file', 'verify_watermark', 'verify_content_integrity',
'extract_metadata_stamp', 'create_artist_image_protection',
# Re-export key components from the armor module for easy access
"Ring", "ArmorConfig", "PureArmorSpec", "ArmorMeta", "ArmorGenerator",
"apply_delta_autosize", "analyze_image_bands", "analyze_array_bands",
] |