File size: 19,131 Bytes
5a65ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""

Performance Optimization and Error Handling Utilities



This module provides utilities for optimizing performance and handling

errors gracefully in the speech translation system.

"""

import logging
import time
import psutil
import torch
from typing import Dict, Any, Optional, Callable
from functools import wraps
from pathlib import Path
import json

from ..config import SAMPLE_RATE


class PerformanceMonitor:
    """Monitor system performance and resource usage."""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        self.metrics = {
            'cpu_usage': [],
            'memory_usage': [],
            'gpu_usage': [],
            'processing_times': [],
            'model_load_times': {}
        }
    
    def get_system_info(self) -> Dict[str, Any]:
        """Get current system information."""
        info = {
            'cpu_percent': psutil.cpu_percent(),
            'memory_percent': psutil.virtual_memory().percent,
            'available_memory_gb': psutil.virtual_memory().available / (1024**3),
            'disk_usage_percent': psutil.disk_usage('/').percent if hasattr(psutil.disk_usage, '__call__') else 0,
            'cuda_available': torch.cuda.is_available(),
            'cuda_device_count': torch.cuda.device_count() if torch.cuda.is_available() else 0
        }
        
        if torch.cuda.is_available():
            try:
                info['gpu_memory_allocated'] = torch.cuda.memory_allocated() / (1024**3)  # GB
                info['gpu_memory_reserved'] = torch.cuda.memory_reserved() / (1024**3)   # GB
            except:
                info['gpu_memory_allocated'] = 0
                info['gpu_memory_reserved'] = 0
        
        return info
    
    def log_system_status(self):
        """Log current system status."""
        info = self.get_system_info()
        self.logger.info(f"System Status - CPU: {info['cpu_percent']:.1f}%, "
                        f"Memory: {info['memory_percent']:.1f}%, "
                        f"Available Memory: {info['available_memory_gb']:.1f}GB")
        
        if info['cuda_available']:
            self.logger.info(f"GPU Memory - Allocated: {info['gpu_memory_allocated']:.2f}GB, "
                           f"Reserved: {info['gpu_memory_reserved']:.2f}GB")
    
    def record_processing_time(self, operation: str, duration: float):
        """Record processing time for an operation."""
        self.metrics['processing_times'].append({
            'operation': operation,
            'duration': duration,
            'timestamp': time.time()
        })
        
        self.logger.debug(f"Operation '{operation}' completed in {duration:.2f}s")
    
    def get_performance_summary(self) -> Dict[str, Any]:
        """Get performance summary statistics."""
        processing_times = self.metrics['processing_times']
        
        if not processing_times:
            return {'message': 'No performance data available'}
        
        # Group by operation
        operations = {}
        for entry in processing_times:
            op = entry['operation']
            if op not in operations:
                operations[op] = []
            operations[op].append(entry['duration'])
        
        # Calculate statistics
        summary = {}
        for op, times in operations.items():
            summary[op] = {
                'count': len(times),
                'total_time': sum(times),
                'avg_time': sum(times) / len(times),
                'min_time': min(times),
                'max_time': max(times)
            }
        
        return summary


def performance_monitor(operation_name: Optional[str] = None):
    """Decorator to monitor function performance."""
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args, **kwargs):
            start_time = time.time()
            
            try:
                result = func(*args, **kwargs)
                duration = time.time() - start_time
                
                # Log performance
                op_name = operation_name or func.__name__
                logging.getLogger(__name__).debug(f"{op_name} completed in {duration:.2f}s")
                
                return result
                
            except Exception as e:
                duration = time.time() - start_time
                logging.getLogger(__name__).error(f"{func.__name__} failed after {duration:.2f}s: {str(e)}")
                raise
        
        return wrapper
    return decorator


class MemoryManager:
    """Manage memory usage and cleanup."""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
    
    def cleanup_gpu_memory(self):
        """Clean up GPU memory."""
        if torch.cuda.is_available():
            try:
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
                self.logger.debug("GPU memory cleared")
            except Exception as e:
                self.logger.warning(f"Failed to cleanup GPU memory: {str(e)}")
    
    def get_memory_usage(self) -> Dict[str, float]:
        """Get current memory usage."""
        memory_info = {
            'system_memory_percent': psutil.virtual_memory().percent,
            'system_memory_available_gb': psutil.virtual_memory().available / (1024**3)
        }
        
        if torch.cuda.is_available():
            try:
                memory_info['gpu_memory_allocated_gb'] = torch.cuda.memory_allocated() / (1024**3)
                memory_info['gpu_memory_reserved_gb'] = torch.cuda.memory_reserved() / (1024**3)
            except:
                memory_info['gpu_memory_allocated_gb'] = 0
                memory_info['gpu_memory_reserved_gb'] = 0
        
        return memory_info
    
    def check_memory_threshold(self, threshold_percent: float = 85.0) -> bool:
        """Check if memory usage exceeds threshold."""
        usage = self.get_memory_usage()
        
        if usage['system_memory_percent'] > threshold_percent:
            self.logger.warning(f"High system memory usage: {usage['system_memory_percent']:.1f}%")
            return True
        
        return False
    
    def optimize_memory_usage(self):
        """Optimize memory usage."""
        self.cleanup_gpu_memory()
        
        # Force garbage collection
        import gc
        gc.collect()
        
        self.logger.debug("Memory optimization completed")


class ErrorHandler:
    """Enhanced error handling with recovery strategies."""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        self.error_counts = {}
        self.recovery_strategies = {}
    
    def register_recovery_strategy(self, error_type: type, strategy: Callable):
        """Register a recovery strategy for specific error type."""
        self.recovery_strategies[error_type] = strategy
    
    def handle_error(self, error: Exception, context: str = "") -> bool:
        """

        Handle error with recovery strategy.

        

        Returns:

            bool: True if recovered, False if not

        """
        error_type = type(error)
        error_key = f"{error_type.__name__}_{context}"
        
        # Track error frequency
        self.error_counts[error_key] = self.error_counts.get(error_key, 0) + 1
        
        self.logger.error(f"Error in {context}: {str(error)} (count: {self.error_counts[error_key]})")
        
        # Try recovery strategy
        if error_type in self.recovery_strategies:
            try:
                self.logger.info(f"Attempting recovery for {error_type.__name__}")
                self.recovery_strategies[error_type](error)
                return True
            except Exception as recovery_error:
                self.logger.error(f"Recovery failed: {str(recovery_error)}")
        
        return False
    
    def get_error_statistics(self) -> Dict[str, int]:
        """Get error statistics."""
        return self.error_counts.copy()


def retry_on_failure(max_retries: int = 3, delay: float = 1.0, exponential_backoff: bool = True):
    """Decorator to retry function on failure."""
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args, **kwargs):
            last_exception = None
            
            for attempt in range(max_retries + 1):
                try:
                    return func(*args, **kwargs)
                except Exception as e:
                    last_exception = e
                    
                    if attempt < max_retries:
                        wait_time = delay * (2 ** attempt if exponential_backoff else 1)
                        logging.getLogger(__name__).warning(
                            f"Attempt {attempt + 1} failed: {str(e)}. Retrying in {wait_time:.1f}s..."
                        )
                        time.sleep(wait_time)
                    else:
                        logging.getLogger(__name__).error(f"All {max_retries + 1} attempts failed")
            
            raise last_exception
        
        return wrapper
    return decorator


class ModelOptimizer:
    """Optimize model performance and resource usage."""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        self.optimization_cache = {}
    
    def optimize_for_device(self, device: str) -> Dict[str, Any]:
        """Get optimization settings for specific device."""
        optimizations = {
            'cpu': {
                'torch_threads': min(4, torch.get_num_threads()),
                'batch_size': 1,
                'precision': 'float32',
                'num_workers': 0
            },
            'cuda': {
                'torch_threads': torch.get_num_threads(),
                'batch_size': 4,
                'precision': 'float16',
                'num_workers': 2
            }
        }
        
        return optimizations.get(device, optimizations['cpu'])
    
    def optimize_audio_processing(self, audio_length: float, device: str) -> Dict[str, Any]:
        """Optimize audio processing parameters based on audio length and device."""
        settings = {
            'chunk_size': 30.0,  # seconds
            'overlap': 0.1,      # 10% overlap
            'sample_rate': SAMPLE_RATE
        }
        
        # Adjust chunk size based on audio length and device capabilities
        if device == 'cuda':
            # GPU can handle larger chunks
            settings['chunk_size'] = min(60.0, audio_length)
        else:
            # CPU: smaller chunks for better performance
            settings['chunk_size'] = min(30.0, audio_length)
        
        # For very short audio, process as single chunk
        if audio_length < 10.0:
            settings['chunk_size'] = audio_length
            settings['overlap'] = 0.0
        
        return settings
    
    def get_recommended_model_sizes(self, device: str, available_memory_gb: float) -> Dict[str, str]:
        """Get recommended model sizes based on available resources."""
        recommendations = {}
        
        if device == 'cpu':
            # CPU recommendations based on memory
            if available_memory_gb >= 16:
                recommendations = {
                    'whisper': 'base',
                    'translation': 'local',
                    'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
                }
            elif available_memory_gb >= 8:
                recommendations = {
                    'whisper': 'tiny',
                    'translation': 'google',
                    'tts': 'tts_models/en/ljspeech/tacotron2-DDC'
                }
            else:
                recommendations = {
                    'whisper': 'tiny',
                    'translation': 'google',
                    'tts': 'tts_models/en/ljspeech/speedy_speech'
                }
        
        else:  # GPU
            # GPU recommendations
            if available_memory_gb >= 12:
                recommendations = {
                    'whisper': 'large',
                    'translation': 'local',
                    'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
                }
            elif available_memory_gb >= 6:
                recommendations = {
                    'whisper': 'medium',
                    'translation': 'local',
                    'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
                }
            else:
                recommendations = {
                    'whisper': 'base',
                    'translation': 'google',
                    'tts': 'tts_models/en/ljspeech/tacotron2-DDC'
                }
        
        return recommendations


class ConfigurationOptimizer:
    """Optimize system configuration based on hardware and usage patterns."""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        self.performance_monitor = PerformanceMonitor()
        self.memory_manager = MemoryManager()
        self.model_optimizer = ModelOptimizer()
    
    def analyze_system(self) -> Dict[str, Any]:
        """Analyze current system capabilities."""
        system_info = self.performance_monitor.get_system_info()
        memory_info = self.memory_manager.get_memory_usage()
        
        analysis = {
            'system_info': system_info,
            'memory_info': memory_info,
            'recommended_device': 'cuda' if system_info['cuda_available'] else 'cpu',
            'performance_level': 'high' if system_info['cuda_available'] and memory_info['system_memory_available_gb'] > 12 else 'standard'
        }
        
        # Model recommendations
        device = analysis['recommended_device']
        available_memory = memory_info['system_memory_available_gb']
        
        analysis['recommended_models'] = self.model_optimizer.get_recommended_model_sizes(
            device, available_memory
        )
        
        return analysis
    
    def generate_optimal_config(self, usage_pattern: str = 'general') -> Dict[str, Any]:
        """

        Generate optimal configuration based on system analysis.

        

        Args:

            usage_pattern: 'realtime', 'batch', 'quality', or 'general'

        """
        analysis = self.analyze_system()
        
        base_config = {
            'device': analysis['recommended_device'],
            'speech_model': analysis['recommended_models']['whisper'],
            'translation_engine': analysis['recommended_models']['translation'],
            'tts_model': analysis['recommended_models']['tts']
        }
        
        # Adjust based on usage pattern
        if usage_pattern == 'realtime':
            # Optimize for speed
            base_config.update({
                'speech_model': 'tiny',
                'translation_engine': 'google',  # Faster API calls
                'audio_chunk_size': 15.0,  # Smaller chunks for faster processing
                'enable_caching': True
            })
        
        elif usage_pattern == 'batch':
            # Optimize for throughput
            base_config.update({
                'audio_chunk_size': 60.0,  # Larger chunks for batch processing
                'batch_size': 8,
                'enable_parallel_processing': True
            })
        
        elif usage_pattern == 'quality':
            # Optimize for quality
            if analysis['system_info']['cuda_available']:
                base_config.update({
                    'speech_model': 'large',
                    'translation_engine': 'local',
                    'voice_sample_requirements': {
                        'min_duration': 30.0,
                        'min_samples': 5
                    }
                })
        
        return base_config
    
    def save_config(self, config: Dict[str, Any], config_path: str):
        """Save configuration to file."""
        config_file = Path(config_path)
        config_file.parent.mkdir(parents=True, exist_ok=True)
        
        with open(config_file, 'w') as f:
            json.dump(config, f, indent=2)
        
        self.logger.info(f"Configuration saved to: {config_file}")
    
    def load_config(self, config_path: str) -> Dict[str, Any]:
        """Load configuration from file."""
        config_file = Path(config_path)
        
        if not config_file.exists():
            self.logger.warning(f"Configuration file not found: {config_file}")
            return self.generate_optimal_config()
        
        with open(config_file, 'r') as f:
            config = json.load(f)
        
        self.logger.info(f"Configuration loaded from: {config_file}")
        return config


# Utility functions for common optimizations
def optimize_torch_settings(device: str):
    """Optimize PyTorch settings for the given device."""
    if device == 'cpu':
        # Optimize for CPU
        torch.set_num_threads(min(4, torch.get_num_threads()))
        torch.set_num_interop_threads(2)
    else:
        # GPU optimizations
        torch.backends.cudnn.benchmark = True
        torch.backends.cudnn.deterministic = False


def setup_error_recovery():
    """Setup common error recovery strategies."""
    error_handler = ErrorHandler()
    memory_manager = MemoryManager()
    
    # GPU out of memory recovery
    def gpu_memory_recovery(error):
        memory_manager.cleanup_gpu_memory()
        time.sleep(1)  # Wait for cleanup
    
    # Network error recovery for translation
    def network_recovery(error):
        time.sleep(2)  # Wait before retry
    
    error_handler.register_recovery_strategy(RuntimeError, gpu_memory_recovery)
    error_handler.register_recovery_strategy(ConnectionError, network_recovery)
    
    return error_handler


# Performance profiling decorator
def profile_performance(func):
    """Decorator to profile function performance."""
    @wraps(func)
    def wrapper(*args, **kwargs):
        import cProfile
        import pstats
        import io
        
        profiler = cProfile.Profile()
        profiler.enable()
        
        try:
            result = func(*args, **kwargs)
        finally:
            profiler.disable()
            
            # Print performance stats
            s = io.StringIO()
            stats = pstats.Stats(profiler, stream=s)
            stats.sort_stats('cumulative')
            stats.print_stats(10)  # Top 10 functions
            
            logging.getLogger(__name__).debug(f"Performance profile for {func.__name__}:\\n{s.getvalue()}")
        
        return result
    
    return wrapper