Spaces:
Sleeping
Sleeping
File size: 19,131 Bytes
5a65ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
"""
Performance Optimization and Error Handling Utilities
This module provides utilities for optimizing performance and handling
errors gracefully in the speech translation system.
"""
import logging
import time
import psutil
import torch
from typing import Dict, Any, Optional, Callable
from functools import wraps
from pathlib import Path
import json
from ..config import SAMPLE_RATE
class PerformanceMonitor:
"""Monitor system performance and resource usage."""
def __init__(self):
self.logger = logging.getLogger(__name__)
self.metrics = {
'cpu_usage': [],
'memory_usage': [],
'gpu_usage': [],
'processing_times': [],
'model_load_times': {}
}
def get_system_info(self) -> Dict[str, Any]:
"""Get current system information."""
info = {
'cpu_percent': psutil.cpu_percent(),
'memory_percent': psutil.virtual_memory().percent,
'available_memory_gb': psutil.virtual_memory().available / (1024**3),
'disk_usage_percent': psutil.disk_usage('/').percent if hasattr(psutil.disk_usage, '__call__') else 0,
'cuda_available': torch.cuda.is_available(),
'cuda_device_count': torch.cuda.device_count() if torch.cuda.is_available() else 0
}
if torch.cuda.is_available():
try:
info['gpu_memory_allocated'] = torch.cuda.memory_allocated() / (1024**3) # GB
info['gpu_memory_reserved'] = torch.cuda.memory_reserved() / (1024**3) # GB
except:
info['gpu_memory_allocated'] = 0
info['gpu_memory_reserved'] = 0
return info
def log_system_status(self):
"""Log current system status."""
info = self.get_system_info()
self.logger.info(f"System Status - CPU: {info['cpu_percent']:.1f}%, "
f"Memory: {info['memory_percent']:.1f}%, "
f"Available Memory: {info['available_memory_gb']:.1f}GB")
if info['cuda_available']:
self.logger.info(f"GPU Memory - Allocated: {info['gpu_memory_allocated']:.2f}GB, "
f"Reserved: {info['gpu_memory_reserved']:.2f}GB")
def record_processing_time(self, operation: str, duration: float):
"""Record processing time for an operation."""
self.metrics['processing_times'].append({
'operation': operation,
'duration': duration,
'timestamp': time.time()
})
self.logger.debug(f"Operation '{operation}' completed in {duration:.2f}s")
def get_performance_summary(self) -> Dict[str, Any]:
"""Get performance summary statistics."""
processing_times = self.metrics['processing_times']
if not processing_times:
return {'message': 'No performance data available'}
# Group by operation
operations = {}
for entry in processing_times:
op = entry['operation']
if op not in operations:
operations[op] = []
operations[op].append(entry['duration'])
# Calculate statistics
summary = {}
for op, times in operations.items():
summary[op] = {
'count': len(times),
'total_time': sum(times),
'avg_time': sum(times) / len(times),
'min_time': min(times),
'max_time': max(times)
}
return summary
def performance_monitor(operation_name: Optional[str] = None):
"""Decorator to monitor function performance."""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
try:
result = func(*args, **kwargs)
duration = time.time() - start_time
# Log performance
op_name = operation_name or func.__name__
logging.getLogger(__name__).debug(f"{op_name} completed in {duration:.2f}s")
return result
except Exception as e:
duration = time.time() - start_time
logging.getLogger(__name__).error(f"{func.__name__} failed after {duration:.2f}s: {str(e)}")
raise
return wrapper
return decorator
class MemoryManager:
"""Manage memory usage and cleanup."""
def __init__(self):
self.logger = logging.getLogger(__name__)
def cleanup_gpu_memory(self):
"""Clean up GPU memory."""
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.synchronize()
self.logger.debug("GPU memory cleared")
except Exception as e:
self.logger.warning(f"Failed to cleanup GPU memory: {str(e)}")
def get_memory_usage(self) -> Dict[str, float]:
"""Get current memory usage."""
memory_info = {
'system_memory_percent': psutil.virtual_memory().percent,
'system_memory_available_gb': psutil.virtual_memory().available / (1024**3)
}
if torch.cuda.is_available():
try:
memory_info['gpu_memory_allocated_gb'] = torch.cuda.memory_allocated() / (1024**3)
memory_info['gpu_memory_reserved_gb'] = torch.cuda.memory_reserved() / (1024**3)
except:
memory_info['gpu_memory_allocated_gb'] = 0
memory_info['gpu_memory_reserved_gb'] = 0
return memory_info
def check_memory_threshold(self, threshold_percent: float = 85.0) -> bool:
"""Check if memory usage exceeds threshold."""
usage = self.get_memory_usage()
if usage['system_memory_percent'] > threshold_percent:
self.logger.warning(f"High system memory usage: {usage['system_memory_percent']:.1f}%")
return True
return False
def optimize_memory_usage(self):
"""Optimize memory usage."""
self.cleanup_gpu_memory()
# Force garbage collection
import gc
gc.collect()
self.logger.debug("Memory optimization completed")
class ErrorHandler:
"""Enhanced error handling with recovery strategies."""
def __init__(self):
self.logger = logging.getLogger(__name__)
self.error_counts = {}
self.recovery_strategies = {}
def register_recovery_strategy(self, error_type: type, strategy: Callable):
"""Register a recovery strategy for specific error type."""
self.recovery_strategies[error_type] = strategy
def handle_error(self, error: Exception, context: str = "") -> bool:
"""
Handle error with recovery strategy.
Returns:
bool: True if recovered, False if not
"""
error_type = type(error)
error_key = f"{error_type.__name__}_{context}"
# Track error frequency
self.error_counts[error_key] = self.error_counts.get(error_key, 0) + 1
self.logger.error(f"Error in {context}: {str(error)} (count: {self.error_counts[error_key]})")
# Try recovery strategy
if error_type in self.recovery_strategies:
try:
self.logger.info(f"Attempting recovery for {error_type.__name__}")
self.recovery_strategies[error_type](error)
return True
except Exception as recovery_error:
self.logger.error(f"Recovery failed: {str(recovery_error)}")
return False
def get_error_statistics(self) -> Dict[str, int]:
"""Get error statistics."""
return self.error_counts.copy()
def retry_on_failure(max_retries: int = 3, delay: float = 1.0, exponential_backoff: bool = True):
"""Decorator to retry function on failure."""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
last_exception = None
for attempt in range(max_retries + 1):
try:
return func(*args, **kwargs)
except Exception as e:
last_exception = e
if attempt < max_retries:
wait_time = delay * (2 ** attempt if exponential_backoff else 1)
logging.getLogger(__name__).warning(
f"Attempt {attempt + 1} failed: {str(e)}. Retrying in {wait_time:.1f}s..."
)
time.sleep(wait_time)
else:
logging.getLogger(__name__).error(f"All {max_retries + 1} attempts failed")
raise last_exception
return wrapper
return decorator
class ModelOptimizer:
"""Optimize model performance and resource usage."""
def __init__(self):
self.logger = logging.getLogger(__name__)
self.optimization_cache = {}
def optimize_for_device(self, device: str) -> Dict[str, Any]:
"""Get optimization settings for specific device."""
optimizations = {
'cpu': {
'torch_threads': min(4, torch.get_num_threads()),
'batch_size': 1,
'precision': 'float32',
'num_workers': 0
},
'cuda': {
'torch_threads': torch.get_num_threads(),
'batch_size': 4,
'precision': 'float16',
'num_workers': 2
}
}
return optimizations.get(device, optimizations['cpu'])
def optimize_audio_processing(self, audio_length: float, device: str) -> Dict[str, Any]:
"""Optimize audio processing parameters based on audio length and device."""
settings = {
'chunk_size': 30.0, # seconds
'overlap': 0.1, # 10% overlap
'sample_rate': SAMPLE_RATE
}
# Adjust chunk size based on audio length and device capabilities
if device == 'cuda':
# GPU can handle larger chunks
settings['chunk_size'] = min(60.0, audio_length)
else:
# CPU: smaller chunks for better performance
settings['chunk_size'] = min(30.0, audio_length)
# For very short audio, process as single chunk
if audio_length < 10.0:
settings['chunk_size'] = audio_length
settings['overlap'] = 0.0
return settings
def get_recommended_model_sizes(self, device: str, available_memory_gb: float) -> Dict[str, str]:
"""Get recommended model sizes based on available resources."""
recommendations = {}
if device == 'cpu':
# CPU recommendations based on memory
if available_memory_gb >= 16:
recommendations = {
'whisper': 'base',
'translation': 'local',
'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
}
elif available_memory_gb >= 8:
recommendations = {
'whisper': 'tiny',
'translation': 'google',
'tts': 'tts_models/en/ljspeech/tacotron2-DDC'
}
else:
recommendations = {
'whisper': 'tiny',
'translation': 'google',
'tts': 'tts_models/en/ljspeech/speedy_speech'
}
else: # GPU
# GPU recommendations
if available_memory_gb >= 12:
recommendations = {
'whisper': 'large',
'translation': 'local',
'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
}
elif available_memory_gb >= 6:
recommendations = {
'whisper': 'medium',
'translation': 'local',
'tts': 'tts_models/multilingual/multi-dataset/xtts_v2'
}
else:
recommendations = {
'whisper': 'base',
'translation': 'google',
'tts': 'tts_models/en/ljspeech/tacotron2-DDC'
}
return recommendations
class ConfigurationOptimizer:
"""Optimize system configuration based on hardware and usage patterns."""
def __init__(self):
self.logger = logging.getLogger(__name__)
self.performance_monitor = PerformanceMonitor()
self.memory_manager = MemoryManager()
self.model_optimizer = ModelOptimizer()
def analyze_system(self) -> Dict[str, Any]:
"""Analyze current system capabilities."""
system_info = self.performance_monitor.get_system_info()
memory_info = self.memory_manager.get_memory_usage()
analysis = {
'system_info': system_info,
'memory_info': memory_info,
'recommended_device': 'cuda' if system_info['cuda_available'] else 'cpu',
'performance_level': 'high' if system_info['cuda_available'] and memory_info['system_memory_available_gb'] > 12 else 'standard'
}
# Model recommendations
device = analysis['recommended_device']
available_memory = memory_info['system_memory_available_gb']
analysis['recommended_models'] = self.model_optimizer.get_recommended_model_sizes(
device, available_memory
)
return analysis
def generate_optimal_config(self, usage_pattern: str = 'general') -> Dict[str, Any]:
"""
Generate optimal configuration based on system analysis.
Args:
usage_pattern: 'realtime', 'batch', 'quality', or 'general'
"""
analysis = self.analyze_system()
base_config = {
'device': analysis['recommended_device'],
'speech_model': analysis['recommended_models']['whisper'],
'translation_engine': analysis['recommended_models']['translation'],
'tts_model': analysis['recommended_models']['tts']
}
# Adjust based on usage pattern
if usage_pattern == 'realtime':
# Optimize for speed
base_config.update({
'speech_model': 'tiny',
'translation_engine': 'google', # Faster API calls
'audio_chunk_size': 15.0, # Smaller chunks for faster processing
'enable_caching': True
})
elif usage_pattern == 'batch':
# Optimize for throughput
base_config.update({
'audio_chunk_size': 60.0, # Larger chunks for batch processing
'batch_size': 8,
'enable_parallel_processing': True
})
elif usage_pattern == 'quality':
# Optimize for quality
if analysis['system_info']['cuda_available']:
base_config.update({
'speech_model': 'large',
'translation_engine': 'local',
'voice_sample_requirements': {
'min_duration': 30.0,
'min_samples': 5
}
})
return base_config
def save_config(self, config: Dict[str, Any], config_path: str):
"""Save configuration to file."""
config_file = Path(config_path)
config_file.parent.mkdir(parents=True, exist_ok=True)
with open(config_file, 'w') as f:
json.dump(config, f, indent=2)
self.logger.info(f"Configuration saved to: {config_file}")
def load_config(self, config_path: str) -> Dict[str, Any]:
"""Load configuration from file."""
config_file = Path(config_path)
if not config_file.exists():
self.logger.warning(f"Configuration file not found: {config_file}")
return self.generate_optimal_config()
with open(config_file, 'r') as f:
config = json.load(f)
self.logger.info(f"Configuration loaded from: {config_file}")
return config
# Utility functions for common optimizations
def optimize_torch_settings(device: str):
"""Optimize PyTorch settings for the given device."""
if device == 'cpu':
# Optimize for CPU
torch.set_num_threads(min(4, torch.get_num_threads()))
torch.set_num_interop_threads(2)
else:
# GPU optimizations
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
def setup_error_recovery():
"""Setup common error recovery strategies."""
error_handler = ErrorHandler()
memory_manager = MemoryManager()
# GPU out of memory recovery
def gpu_memory_recovery(error):
memory_manager.cleanup_gpu_memory()
time.sleep(1) # Wait for cleanup
# Network error recovery for translation
def network_recovery(error):
time.sleep(2) # Wait before retry
error_handler.register_recovery_strategy(RuntimeError, gpu_memory_recovery)
error_handler.register_recovery_strategy(ConnectionError, network_recovery)
return error_handler
# Performance profiling decorator
def profile_performance(func):
"""Decorator to profile function performance."""
@wraps(func)
def wrapper(*args, **kwargs):
import cProfile
import pstats
import io
profiler = cProfile.Profile()
profiler.enable()
try:
result = func(*args, **kwargs)
finally:
profiler.disable()
# Print performance stats
s = io.StringIO()
stats = pstats.Stats(profiler, stream=s)
stats.sort_stats('cumulative')
stats.print_stats(10) # Top 10 functions
logging.getLogger(__name__).debug(f"Performance profile for {func.__name__}:\\n{s.getvalue()}")
return result
return wrapper |