File size: 13,149 Bytes
eb09c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
#!/usr/bin/env python3
"""
Debug script to understand the expected tensor format for TimeSformer model.
This script tests different tensor shapes and formats to find the correct one.
"""
import torch
import numpy as np
from PIL import Image
import logging
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def create_test_frames(num_frames=8, size=(224, 224)):
"""Create test frames with different colors to help debug."""
frames = []
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
(255, 0, 255), (0, 255, 255), (128, 128, 128), (255, 255, 255)]
for i in range(num_frames):
color = colors[i % len(colors)]
frame = Image.new('RGB', size, color)
frames.append(frame)
return frames
def test_tensor_shapes():
"""Test different tensor shapes to see what TimeSformer expects."""
print("π Testing TimeSformer Input Formats")
print("=" * 50)
try:
from transformers import AutoImageProcessor, TimesformerForVideoClassification
# Load model and processor
print("Loading TimeSformer model...")
processor = AutoImageProcessor.from_pretrained("facebook/timesformer-base-finetuned-k400")
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
model.eval()
print("β
Model loaded successfully")
print(f"Model config num_frames: {getattr(model.config, 'num_frames', 'Not found')}")
print(f"Model config image_size: {getattr(model.config, 'image_size', 'Not found')}")
# Create test frames
frames = create_test_frames(8, (224, 224))
print(f"β
Created {len(frames)} test frames")
# Test 1: Try to use processor (the "correct" way)
print("\nπ Test 1: Using Processor")
try:
# Different processor approaches
processor_tests = [
("Direct frames", lambda: processor(images=frames, return_tensors="pt")),
("List of frames", lambda: processor(images=[frames], return_tensors="pt")),
("Videos parameter", lambda: processor(videos=frames, return_tensors="pt") if hasattr(processor, 'videos') else None),
("Videos list parameter", lambda: processor(videos=[frames], return_tensors="pt") if hasattr(processor, 'videos') else None),
]
for test_name, test_func in processor_tests:
try:
if test_func is None:
continue
result = test_func()
if result and 'pixel_values' in result:
tensor = result['pixel_values']
print(f" β
{test_name}: shape {tensor.shape}, dtype {tensor.dtype}, range [{tensor.min():.3f}, {tensor.max():.3f}]")
# Try inference with this tensor
try:
with torch.no_grad():
output = model(pixel_values=tensor)
print(f" π― Inference successful! Output shape: {output.logits.shape}")
return tensor # Found working format!
except Exception as inference_error:
print(f" β Inference failed: {str(inference_error)[:100]}...")
else:
print(f" β {test_name}: No pixel_values in result")
except Exception as e:
print(f" β {test_name}: {str(e)[:100]}...")
except Exception as e:
print(f"β Processor tests failed: {e}")
# Test 2: Manual tensor creation with different formats
print("\nπ Test 2: Manual Tensor Creation")
# Convert frames to numpy first
frame_arrays = []
for frame in frames:
if frame.mode != 'RGB':
frame = frame.convert('RGB')
if frame.size != (224, 224):
frame = frame.resize((224, 224), Image.Resampling.LANCZOS)
# Convert to numpy array
frame_array = np.array(frame, dtype=np.float32) / 255.0
frame_arrays.append(frame_array)
print(f"Frame arrays created: {len(frame_arrays)} frames of shape {frame_arrays[0].shape}")
# Test different tensor arrangements
tensor_tests = [
# Format: (description, creation_function)
("NCHW format", lambda: create_nchw_tensor(frame_arrays)),
("NTHW format", lambda: create_nthw_tensor(frame_arrays)),
("CTHW format", lambda: create_cthw_tensor(frame_arrays)),
("TCHW format", lambda: create_tchw_tensor(frame_arrays)),
("Reshaped format", lambda: create_reshaped_tensor(frame_arrays)),
]
for test_name, create_func in tensor_tests:
try:
tensor = create_func()
print(f" π {test_name}: shape {tensor.shape}, dtype {tensor.dtype}")
# Try inference
try:
with torch.no_grad():
output = model(pixel_values=tensor)
print(f" β
Inference successful! Output logits shape: {output.logits.shape}")
# Get top prediction
probs = torch.softmax(output.logits, dim=-1)
top_prob, top_idx = torch.max(probs, dim=-1)
label = model.config.id2label[top_idx.item()]
print(f" π― Top prediction: {label} ({top_prob.item():.3f})")
return tensor # Found working format!
except Exception as inference_error:
error_msg = str(inference_error)
if "channels" in error_msg:
print(f" β Channel dimension error: {error_msg[:150]}...")
elif "shape" in error_msg:
print(f" β Shape error: {error_msg[:150]}...")
else:
print(f" β Inference error: {error_msg[:150]}...")
except Exception as creation_error:
print(f" β {test_name}: Creation failed - {creation_error}")
print("\nπ₯ No working tensor format found!")
return None
except Exception as e:
print(f"β Failed to load model: {e}")
return None
def create_nchw_tensor(frame_arrays):
"""Create tensor in NCHW format: (batch, channels, height, width) for each frame."""
# This treats each frame independently
batch_tensors = []
for frame_array in frame_arrays:
# frame_array shape: (224, 224, 3)
frame_tensor = torch.from_numpy(frame_array).permute(2, 0, 1) # (3, 224, 224)
batch_tensors.append(frame_tensor)
# Stack into batch: (num_frames, 3, 224, 224)
return torch.stack(batch_tensors).unsqueeze(0) # (1, num_frames, 3, 224, 224)
def create_nthw_tensor(frame_arrays):
"""Create tensor in NTHW format: (batch, frames, height, width) - flattened channels."""
video_array = np.stack(frame_arrays, axis=0) # (8, 224, 224, 3)
video_tensor = torch.from_numpy(video_array)
# Flatten the channel dimension into the frame dimension
return video_tensor.view(1, 8 * 3, 224, 224) # (1, 24, 224, 224)
def create_cthw_tensor(frame_arrays):
"""Create tensor in CTHW format: (channels, frames, height, width)."""
video_array = np.stack(frame_arrays, axis=0) # (8, 224, 224, 3)
video_tensor = torch.from_numpy(video_array)
# Permute to (channels, frames, height, width)
video_tensor = video_tensor.permute(3, 0, 1, 2) # (3, 8, 224, 224)
return video_tensor.unsqueeze(0) # (1, 3, 8, 224, 224)
def create_tchw_tensor(frame_arrays):
"""Create tensor in TCHW format: (frames, channels, height, width)."""
video_array = np.stack(frame_arrays, axis=0) # (8, 224, 224, 3)
video_tensor = torch.from_numpy(video_array)
# Permute to (frames, channels, height, width)
video_tensor = video_tensor.permute(0, 3, 1, 2) # (8, 3, 224, 224)
return video_tensor.unsqueeze(0) # (1, 8, 3, 224, 224)
def create_reshaped_tensor(frame_arrays):
"""Try reshaping the tensor completely."""
video_array = np.stack(frame_arrays, axis=0) # (8, 224, 224, 3)
video_tensor = torch.from_numpy(video_array)
# Try different reshape approaches
total_elements = video_tensor.numel()
# Approach: Treat the entire video as one big image with multiple channels
# Reshape to (1, 3*8, 224, 224) = (1, 24, 224, 224)
return video_tensor.permute(3, 0, 1, 2).contiguous().view(1, 3*8, 224, 224)
def test_working_examples():
"""Test with known working examples from other implementations."""
print("\n㪠Testing Known Working Examples")
print("=" * 40)
try:
# Create a tensor that should definitely work based on the error messages we've seen
# The model expects input[3, 8, 224, 224] but we keep giving it something else
# Let's create exactly what the error message suggests
test_tensor = torch.randn(1, 3, 8, 224, 224) # Random tensor with exact expected shape
print(f"Random tensor shape: {test_tensor.shape}")
from transformers import TimesformerForVideoClassification
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
try:
with torch.no_grad():
output = model(pixel_values=test_tensor)
print(f"β
Random tensor inference successful! Output shape: {output.logits.shape}")
# Now we know the format works, let's create real data in this format
frames = create_test_frames(8, (224, 224))
# Create tensor in the exact same format as the random one that worked
frame_tensors = []
for frame in frames:
if frame.mode != 'RGB':
frame = frame.convert('RGB')
if frame.size != (224, 224):
frame = frame.resize((224, 224), Image.Resampling.LANCZOS)
# Convert to tensor: (height, width, channels) -> (channels, height, width)
frame_array = np.array(frame, dtype=np.float32) / 255.0
frame_tensor = torch.from_numpy(frame_array).permute(2, 0, 1) # (3, 224, 224)
frame_tensors.append(frame_tensor)
# Stack channels first, then frames: (3, 8, 224, 224)
# We want: batch=1, channels=3, frames=8, height=224, width=224
channel_tensors = []
for c in range(3): # For each color channel
channel_frames = []
for frame_tensor in frame_tensors: # For each frame
channel_frames.append(frame_tensor[c]) # Get this channel
channel_tensor = torch.stack(channel_frames) # (8, 224, 224)
channel_tensors.append(channel_tensor)
final_tensor = torch.stack(channel_tensors).unsqueeze(0) # (1, 3, 8, 224, 224)
print(f"Real data tensor shape: {final_tensor.shape}")
# Test inference with real data
with torch.no_grad():
output = model(pixel_values=final_tensor)
print(f"β
Real data inference successful!")
# Get prediction
probs = torch.softmax(output.logits, dim=-1)
top_probs, top_indices = torch.topk(probs, k=3, dim=-1)
print("π― Top 3 predictions:")
for i in range(3):
idx = top_indices[0][i].item()
prob = top_probs[0][i].item()
label = model.config.id2label[idx]
print(f" {i+1}. {label}: {prob:.3f}")
return final_tensor
except Exception as e:
print(f"β Even random tensor failed: {e}")
except Exception as e:
print(f"β Known examples test failed: {e}")
return None
def main():
"""Run all debug tests."""
print("π TimeSformer Input Format Debug")
print("=" * 60)
# Test 1: Standard approaches
working_tensor = test_tensor_shapes()
if working_tensor is not None:
print(f"\nπ Found working tensor format: {working_tensor.shape}")
return 0
# Test 2: Known working examples
working_tensor = test_working_examples()
if working_tensor is not None:
print(f"\nπ Found working tensor format: {working_tensor.shape}")
return 0
print("\nπ₯ No working tensor format found. This suggests a deeper compatibility issue.")
print("\nπ§ Recommendations:")
print("1. Check if the model version is compatible with your transformers version")
print("2. Try using the exact same environment as the original TimeSformer paper")
print("3. Check if there are any preprocessing requirements we're missing")
return 1
if __name__ == "__main__":
exit(main())
|