File size: 29,124 Bytes
639b8e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
import os, gc, random, re, inspect
from contextlib import nullcontext
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter, ImageOps
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline, # for Hi-Res Fix
ControlNetModel,
DPMSolverMultistepScheduler,
)
# ------------------- env / runtime -------------------
# Quiet matplotlib cache warning on Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
# Optional: faster model downloads on Spaces
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
# Hugging Face token (add it in Space Settings → Variables and secrets)
HF_TOKEN = os.environ.get("HUGGINGFACE_HUB_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN")
# Device / dtype (CPU-safe)
IS_CUDA = torch.cuda.is_available()
IS_MPS = getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
DTYPE = torch.float16 if (IS_CUDA or IS_MPS) else torch.float32
DEV_TORCH = "cuda" if IS_CUDA else ("mps" if IS_MPS else "cpu")
def autocast_ctx():
if IS_CUDA:
return torch.autocast(device_type="cuda", dtype=torch.float16)
if IS_MPS:
# MPS autocast uses fp16 path; acceptable for SD 1.5 on macOS
return torch.autocast(device_type="mps", dtype=torch.float16)
return nullcontext() # CPU: no autocast
# ------------------- models -------------------
BASE_MODELS = {
"stable-diffusion-v1-5": "runwayml/stable-diffusion-v1-5",
"dream": "Lykon/dreamshaper-8",
}
# ControlNets
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"
CN_BRIGHT = "latentcat/control_v1p_sd15_brightness"
# ---------- helpers ----------
def resize_like(im: Image.Image, width: int, height: int, method=Image.NEAREST) -> Image.Image:
if im.size == (width, height):
return im
return im.resize((int(width), int(height)), method)
def ensure_rgb_img(x):
if isinstance(x, Image.Image):
return x.convert("RGB")
if isinstance(x, np.ndarray):
a = x
if a.dtype != np.uint8:
a = np.clip(a, 0, 255).astype(np.uint8)
if a.ndim == 2:
return Image.fromarray(a, mode="L").convert("RGB")
return Image.fromarray(a).convert("RGB")
if torch.is_tensor(x):
t = x.detach().cpu()
if t.ndim == 3 and t.shape[0] in (1, 3):
t = t.permute(1, 2, 0)
arr = t.numpy()
if arr.max() <= 1.0:
arr = arr * 255.0
arr = np.clip(arr, 0, 255).astype(np.uint8)
if arr.ndim == 2:
return Image.fromarray(arr, mode="L").convert("RGB")
return Image.fromarray(arr).convert("RGB")
raise ValueError(f"Unsupported image type for ensure_rgb_img: {type(x)}")
def snap8(x: int) -> int:
x = max(256, min(1024, int(x)))
return x - (x % 8)
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def make_qr(url="https://example.com", size=768, border=12, back_color="#FFFFFF", blur_radius=0.0):
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
img = img.resize((int(size), int(size)), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.0, feather: float = 1.0) -> Image.Image:
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None])
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# ----- Brightness map preprocessing & mixing -----
def prep_brightness_map(img: Image.Image, size: int, source: str,
blur_px: float = 3.0, gamma: float = 0.9, autocontrast: bool = True) -> Image.Image:
method = Image.NEAREST if source == "qr" else Image.LANCZOS
im = img.resize((size, size), method).convert("L")
if source != "qr":
if autocontrast:
im = ImageOps.autocontrast(im, cutoff=2)
if blur_px and blur_px > 0:
im = im.filter(ImageFilter.GaussianBlur(radius=float(blur_px)))
if gamma and gamma != 1.0:
arr = np.asarray(im, dtype=np.float32) / 255.0
arr = np.clip(arr ** float(gamma), 0.0, 1.0)
im = Image.fromarray((arr * 255.0).astype(np.uint8), "L")
return im.convert("RGB")
def blend_brightness_maps(qr_img: Image.Image,
init_img: Image.Image,
size: int,
alpha: float,
blur_px: float = 2.5,
gamma: float = 0.9,
autocontrast: bool = True) -> Image.Image:
qr_map = prep_brightness_map(qr_img, size, "qr")
init_map = prep_brightness_map(init_img, size, "init",
blur_px=blur_px, gamma=gamma, autocontrast=autocontrast)
qa = np.asarray(qr_map, dtype=np.float32)
ia = np.asarray(init_map, dtype=np.float32)
a = float(alpha)
mix = np.clip((1.0 - a) * ia + a * qa, 0, 255).astype(np.uint8)
return Image.fromarray(mix, mode="RGB")
# ---------- lazy pipelines / models ----------
_CN_QR = None
_CN_BR = None
_CN_TXT2IMG = {}
_CN_IMG2IMG = {}
def _base_scheduler_for(pipe):
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
return pipe
def get_qr_cn():
global _CN_QR
if _CN_QR is None:
_CN_QR = ControlNetModel.from_pretrained(
CN_QRMON, torch_dtype=DTYPE, use_safetensors=True, token=HF_TOKEN
)
return _CN_QR
def get_bright_cn():
global _CN_BR
if _CN_BR is None:
_CN_BR = ControlNetModel.from_pretrained(
CN_BRIGHT, torch_dtype=DTYPE, use_safetensors=True, token=HF_TOKEN
)
return _CN_BR
def get_controlnets(use_brightness: bool):
return [get_qr_cn(), get_bright_cn()] if use_brightness else get_qr_cn()
def get_txt2img_pipe(model_id: str, use_brightness: bool):
key = (model_id, "2cn" if use_brightness else "1cn")
if key not in _CN_TXT2IMG:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=get_controlnets(use_brightness),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
token=HF_TOKEN,
)
_CN_TXT2IMG[key] = _base_scheduler_for(pipe)
return _CN_TXT2IMG[key]
def get_img2img_pipe(model_id: str, use_brightness: bool):
key = (model_id, "2cn" if use_brightness else "1cn")
if key not in _CN_IMG2IMG:
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=get_controlnets(use_brightness),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
token=HF_TOKEN,
)
_CN_IMG2IMG[key] = _base_scheduler_for(pipe)
return _CN_IMG2IMG[key]
# -------- core helpers --------
def _pick_brightness_image(mode: str,
qr_img: Image.Image,
init_img: Image.Image | None,
custom_img: Image.Image | None) -> Image.Image:
if mode == "init" and init_img is not None:
return init_img
if mode == "custom" and custom_img is not None:
return custom_img
return qr_img
# -------- Method 1: QR control model in text-to-image (+ optional Hi-Res Fix) --------
def _qr_txt2img_core(model_id: str,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
use_hires: bool, hires_upscale: float, hires_strength: float,
repair_strength: float, feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None):
s = snap8(size)
# --- Build base-size control images (s x s)
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
if use_brightness:
raw_bright_s = _pick_brightness_image(bright_mode, qr_img, None, bright_custom)
bright_img_s = prep_brightness_map(raw_bright_s, s, bright_mode)
control_images_s = [ensure_rgb_img(qr_img), ensure_rgb_img(bright_img_s)]
scales_s = [float(qr_weight), float(bright_weight)]
starts_s = [float(control_start), float(bright_start)]
ends_s = [float(control_end), float(bright_end)]
else:
control_images_s = ensure_rgb_img(qr_img)
scales_s = float(qr_weight)
starts_s = float(control_start)
ends_s = float(control_end)
# Seed / generator
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
# --- Stage A: txt2img at s x s
pipe = get_txt2img_pipe(model_id, use_brightness)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
kwargs = dict(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
controlnet_conditioning_scale=scales_s,
control_guidance_start=starts_s,
control_guidance_end=ends_s,
)
# detect which argument the pipeline supports
sig = inspect.signature(pipe.__call__)
if "control_image" in sig.parameters:
kwargs["control_image"] = control_images_s
elif "image" in sig.parameters:
kwargs["image"] = control_images_s
else:
raise RuntimeError("Pipeline does not accept controlnet images")
with autocast_ctx():
out = pipe(**kwargs)
lowres = out.images[0]
# --- Stage B: optional hi-res
final = lowres
qr_for_repair = qr_img
if use_hires:
up = max(1.0, min(2.0, float(hires_upscale)))
W = snap8(int(s * up)); H = W
qr_img_hi = resize_like(qr_img, W, H, method=Image.NEAREST)
if use_brightness:
raw_bright_hi = _pick_brightness_image(bright_mode, qr_img_hi, None, bright_custom)
bright_img_hi = prep_brightness_map(raw_bright_hi, W, bright_mode)
control_images_hi = [ensure_rgb_img(qr_img_hi), ensure_rgb_img(bright_img_hi)]
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
else:
control_images_hi = ensure_rgb_img(qr_img_hi)
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
pipe2 = get_img2img_pipe(model_id, use_brightness)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
kwargs2 = dict(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=lowres,
strength=float(hires_strength),
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=W, height=H,
generator=gen,
controlnet_conditioning_scale=scales_hi,
control_guidance_start=starts_hi,
control_guidance_end=ends_hi,
)
sig2 = inspect.signature(pipe2.__call__)
if "control_image" in sig2.parameters:
kwargs2["control_image"] = control_images_hi
elif "image" in sig2.parameters:
kwargs2["image"] = control_images_hi
else:
raise RuntimeError("Img2Img pipeline does not accept controlnet images")
with autocast_ctx():
out2 = pipe2(**kwargs2)
final = out2.images[0]
qr_for_repair = qr_img_hi
final = enforce_qr_contrast(final, qr_for_repair,
strength=float(repair_strength),
feather=float(feather))
return final, lowres, qr_img
# ===================== helpers for img2img =====================
def center_square(im: Image.Image) -> Image.Image:
w, h = im.size
if w == h:
return im
if w > h:
off = (w - h) // 2
return im.crop((off, 0, off + h, h))
else:
off = (h - w) // 2
return im.crop((0, off, w, off + w))
def prep_init_image(init_img: Image.Image, target: int) -> Image.Image:
s = snap8(target)
im = center_square(init_img.convert("RGB"))
return im.resize((s, s), Image.LANCZOS)
# ================== img2img + QR Control core ==================
def _qr_img2img_core(model_id: str,
init_image: Image.Image,
url: str,
style_prompt: str,
negative: str,
steps: int,
cfg: float,
size: int,
border: int,
qr_weight: float,
seed: int,
strength: float,
repair_strength: float,
feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None,
bright_blur_px: float = 2.5, bright_gamma: float = 0.9, bright_autocontrast: bool = True,
bright_mix_alpha: float = 0.65):
s = snap8(size)
init = ensure_rgb_img(prep_init_image(init_image, s))
qr_img = ensure_rgb_img(make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0))
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
if use_brightness:
if bright_mode == "mix":
bright_img = blend_brightness_maps(qr_img, init, s,
alpha=float(bright_mix_alpha),
blur_px=float(bright_blur_px),
gamma=float(bright_gamma),
autocontrast=bool(bright_autocontrast))
else:
raw_bright = _pick_brightness_image(bright_mode, qr_img, init, bright_custom)
bright_img = prep_brightness_map(raw_bright, s, bright_mode,
blur_px=float(bright_blur_px),
gamma=float(bright_gamma),
autocontrast=bool(bright_autocontrast))
control_images = [ensure_rgb_img(qr_img), ensure_rgb_img(bright_img)]
scales = [float(qr_weight), float(bright_weight)]
starts = [float(control_start), float(bright_start)]
ends = [float(control_end), float(bright_end)]
else:
control_images = ensure_rgb_img(qr_img)
scales = float(qr_weight)
starts = float(control_start)
ends = float(control_end)
pipe = get_img2img_pipe(model_id, use_brightness)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
kwargs = dict(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=init,
strength=float(strength),
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
controlnet_conditioning_scale=scales,
control_guidance_start=starts,
control_guidance_end=ends,
)
sig = inspect.signature(pipe.__call__)
if "control_image" in sig.parameters:
kwargs["control_image"] = control_images
elif "image" in sig.parameters and isinstance(control_images, list):
kwargs["image"] = [init] + control_images
else:
raise RuntimeError("Img2Img pipeline does not accept controlnet images")
with autocast_ctx():
out = pipe(**kwargs)
final = out.images[0]
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
return final, init, qr_img
# ============== wrappers for Gradio ==============
@spaces.GPU(duration=120)
def qr_img2img_blend(model_key: str,
init_image: Image.Image,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
strength: float,
repair_strength: float, feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None,
bright_blur_px: float, bright_gamma: float, bright_autocontrast: bool,
bright_mix_alpha: float):
model_id = BASE_MODELS.get(model_key, BASE_MODELS["stable-diffusion-v1-5"])
return _qr_img2img_core(model_id,
init_image,
url, style_prompt, negative,
steps, cfg, size, border,
qr_weight, seed,
strength,
repair_strength, feather,
control_start, control_end,
use_brightness, bright_weight,
bright_start, bright_end,
bright_mode, bright_custom,
bright_blur_px, bright_gamma, bright_autocontrast,
bright_mix_alpha)
@spaces.GPU(duration=120)
def qr_txt2img_sd15(*args):
return _qr_txt2img_core(BASE_MODELS["stable-diffusion-v1-5"], *args)
@spaces.GPU(duration=120)
def qr_txt2img_dream(*args):
return _qr_txt2img_core(BASE_MODELS["dream"], *args)
# ---------- UI ----------
with gr.Blocks() as demo:
gr.Markdown("# ZeroGPU • QR Control (with optional Brightness ControlNet)")
# ---- Tab 1: stable-diffusion-v1-5 (Brightness forced ON) ----
with gr.Tab("stable-diffusion-v1-5"):
url1 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt1 = gr.Textbox(label="Style prompt", value="japanese painting, elegant shrine and torii, distant mount fuji, autumn maple trees, warm sunlight, 1girl in kimono, highly detailed, intricate patterns, anime key visual, dramatic composition")
s_negative1 = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, nsfw, watermark, text, low contrast, deformed, extra digits")
size1 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
steps1 = gr.Slider(10, 50, value=30, step=1, label="Steps")
cfg1 = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="CFG")
border1 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w1 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
seed1 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
cstart1 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend1 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
use_hires1 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up1 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str1 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
repair1 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather1 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
use_bright1 = gr.Checkbox(value=True, visible=False)
bright_w1 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
bright_s1 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
bright_e1 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
bright_mode1 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
bright_ref1 = gr.Image(label="(Optional) custom brightness ref", type="pil")
final_img1 = gr.Image(label="Final (or Hi-Res) image")
low_img1 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img1 = gr.Image(label="Control QR used")
gr.Button("Generate with SD 1.5").click(
qr_txt2img_sd15,
[url1, s_prompt1, s_negative1, steps1, cfg1, size1, border1, qr_w1, seed1,
use_hires1, hires_up1, hires_str1, repair1, feather1,
cstart1, cend1,
use_bright1, bright_w1, bright_s1, bright_e1, bright_mode1, bright_ref1],
[final_img1, low_img1, ctrl_img1],
api_name="qr_txt2img_sd15"
)
# ---- Tab 2: DreamShaper 8 (Brightness forced ON) ----
with gr.Tab("DreamShaper 8"):
url2 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt2 = gr.Textbox(label="Style prompt", value="ornate baroque palace interior, gilded details, chandeliers, volumetric light, ultra detailed, cinematic")
s_negative2 = gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, watermark, text, bad anatomy")
size2 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
steps2 = gr.Slider(10, 50, value=30, step=1, label="Steps")
cfg2 = gr.Slider(1.0, 12.0, value=6.5, step=0.1, label="CFG")
border2 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w2 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
cstart2 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend2 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
use_hires2 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up2 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str2 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
repair2 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather2 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
use_bright2 = gr.Checkbox(value=True, visible=False)
bright_w2 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
bright_s2 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
bright_e2 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
bright_mode2 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
bright_ref2 = gr.Image(label="(Optional) custom brightness ref", type="pil")
final_img2 = gr.Image(label="Final (or Hi-Res) image")
low_img2 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img2 = gr.Image(label="Control QR used")
gr.Button("Generate with DreamShaper 8").click(
qr_txt2img_dream,
[url2, s_prompt2, s_negative2, steps2, cfg2, size2, border2, qr_w2, seed2,
use_hires2, hires_up2, hires_str2, repair2, feather2,
cstart2, cend2,
use_bright2, bright_w2, bright_s2, bright_e2, bright_mode2, bright_ref2],
[final_img2, low_img2, ctrl_img2],
api_name="qr_txt2img_dream"
)
# ------------------- Image Blend (img2img + QR) -------------------
with gr.Tab("Image Blend (img2img + QR)"):
m_key = gr.Dropdown(choices=list(BASE_MODELS.keys()),
value="stable-diffusion-v1-5",
label="Base model")
init_up = gr.Image(label="Upload base image", type="pil")
url_b = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt_b = gr.Textbox(label="Style prompt", value="highly detailed, cinematic lighting, rich textures")
s_negative_b = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, watermark, text")
size_b = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px, target)")
steps_b = gr.Slider(10, 50, value=50, step=1, label="Steps")
cfg_b = gr.Slider(1.0, 12.0, value=7.0, step=0.1, label="CFG")
border_b = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w_b = gr.Slider(0.8, 1.8, value=1.8, step=0.05, label="QR control weight")
seed_b = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
strength_b = gr.Slider(0.2, 0.9, value=0.75, step=0.05, label="Img2Img denoise strength (blend amount)")
cstart_b = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend_b = gr.Slider(0.4, 1.0, value=0.95, step=0.05, label="QR control end")
repair_b = gr.Slider(0.0, 1.0, value=0.1, step=0.05, label="Post repair strength (optional)")
feather_b = gr.Slider(0.0, 3.0, value=1.5, step=0.1, label="Repair feather (px)")
use_bright_b = gr.Checkbox(value=True, label="Add Brightness ControlNet")
bright_w_b = gr.Slider(0.0, 0.5, value=0.25, step=0.01, label="Brightness weight")
bright_s_b = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
bright_e_b = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
bright_mode_b = gr.Radio(choices=["mix","qr","init","custom"], value="mix", label="Brightness source")
bright_ref_b = gr.Image(label="(Optional) custom brightness ref", type="pil")
bright_blur_b = gr.Slider(0.0, 6.0, value=2.5, step=0.1, label="Brightness blur (px)")
bright_gamma_b = gr.Slider(0.6, 1.2, value=0.9, step=0.01, label="Brightness gamma")
bright_auto_b = gr.Checkbox(value=True, label="Brightness auto-contrast")
bright_mix_b = gr.Slider(0.0, 1.0, value=0.65, step=0.01, label="Brightness source mix")
final_b = gr.Image(label="Final blended image")
init_b = gr.Image(label="(Resized) init image used")
ctrl_b = gr.Image(label="Control QR used")
gr.Button("Blend Uploaded Image with QR").click(
qr_img2img_blend,
[m_key, init_up, url_b, s_prompt_b, s_negative_b, steps_b, cfg_b, size_b, border_b,
qr_w_b, seed_b, strength_b, repair_b, feather_b, cstart_b, cend_b,
use_bright_b, bright_w_b, bright_s_b, bright_e_b, bright_mode_b, bright_ref_b,
bright_blur_b, bright_gamma_b, bright_auto_b, bright_mix_b],
[final_b, init_b, ctrl_b],
api_name="qr_img2img_blend"
)
if __name__ == "__main__":
demo.queue(max_size=12).launch(
server_name="0.0.0.0", # 👈 required on Spaces
server_port=7860, # 👈 Spaces expects 7860
show_api=False, # optional: quieter UI
share=False, # Spaces provides the public URL
)
|