Tanut
first commit
32dec54
import os, gc, random, re
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter, ImageOps
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline, # for Hi-Res Fix
ControlNetModel,
DPMSolverMultistepScheduler,
)
# Quiet matplotlib cache warning on Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
# ---- base models for the two tabs ----
BASE_MODELS = {
"stable-diffusion-v1-5": "runwayml/stable-diffusion-v1-5",
"dream": "Lykon/dreamshaper-8",
}
# ControlNets
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"
CN_BRIGHT = "latentcat/control_v1p_sd15_brightness"
# dtype / device
DTYPE = torch.float16
DEV_AUTOCast = "cuda" if torch.cuda.is_available() else "cpu" # mps doesn't support autocast
DEV_TORCH = "cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
# ---------- helpers ----------
def resize_like(im: Image.Image, width: int, height: int, method=Image.NEAREST) -> Image.Image:
if im.size == (width, height):
return im
return im.resize((int(width), int(height)), method)
def snap8(x: int) -> int:
x = max(256, min(1024, int(x)))
return x - (x % 8)
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def make_qr(url="https://example.com", size=768, border=12, back_color="#FFFFFF", blur_radius=0.0):
"""Give ControlNet a sharp, black-on-WHITE QR (no blur)."""
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
img = img.resize((int(size), int(size)), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.0, feather: float = 1.0) -> Image.Image:
"""Optional gentle repair (applied only once at the end)."""
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None])
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# ----- Brightness map preprocessing & mixing -----
def prep_brightness_map(img: Image.Image, size: int, source: str,
blur_px: float = 2.5, gamma: float = 0.9, autocontrast: bool = True) -> Image.Image:
"""
Produces a smooth, contrast-normalized brightness image to stabilize scanability at lower denoise.
- For source='qr': keep NEAREST and skip blur (already high-contrast).
- For source='init' or 'custom': LANCZOS + light blur + autocontrast + mild gamma.
Returns RGB (diffusers expects 3-channel).
"""
method = Image.NEAREST if source == "qr" else Image.LANCZOS
im = img.resize((size, size), method).convert("L")
if source != "qr":
if autocontrast:
im = ImageOps.autocontrast(im, cutoff=2)
if blur_px and blur_px > 0:
im = im.filter(ImageFilter.GaussianBlur(radius=float(blur_px)))
if gamma and gamma != 1.0:
arr = np.asarray(im, dtype=np.float32) / 255.0
arr = np.clip(arr ** float(gamma), 0.0, 1.0)
im = Image.fromarray((arr * 255.0).astype(np.uint8), "L")
return im.convert("RGB")
def blend_brightness_maps(qr_img: Image.Image,
init_img: Image.Image,
size: int,
alpha: float,
blur_px: float = 2.5,
gamma: float = 0.9,
autocontrast: bool = True) -> Image.Image:
"""
Mix QR luminance with init-image luminance.
alpha=0 -> pure init brightness (prettier, weaker QR)
alpha=1 -> pure QR brightness (strong QR)
"""
qr_map = prep_brightness_map(qr_img, size, "qr")
init_map = prep_brightness_map(init_img, size, "init",
blur_px=blur_px, gamma=gamma, autocontrast=autocontrast)
qa = np.asarray(qr_map, dtype=np.float32)
ia = np.asarray(init_map, dtype=np.float32)
a = float(alpha)
mix = np.clip((1.0 - a) * ia + a * qa, 0, 255).astype(np.uint8)
return Image.fromarray(mix, mode="RGB")
# ---------- lazy pipelines / models ----------
_CN_QR = None # QR Monster
_CN_BR = None # Brightness
_CN_TXT2IMG = {} # per-base-model txt2img pipes
_CN_IMG2IMG = {} # per-base-model img2img pipes
def _base_scheduler_for(pipe):
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
return pipe
def get_qr_cn():
global _CN_QR
if _CN_QR is None:
_CN_QR = ControlNetModel.from_pretrained(CN_QRMON, torch_dtype=DTYPE, use_safetensors=True)
return _CN_QR
def get_bright_cn():
global _CN_BR
if _CN_BR is None:
_CN_BR = ControlNetModel.from_pretrained(CN_BRIGHT, torch_dtype=DTYPE, use_safetensors=True)
return _CN_BR
# DIFFUSERS 0.30+: return ControlNetModel OR list[ControlNetModel]
def get_controlnets(use_brightness: bool):
return [get_qr_cn(), get_bright_cn()] if use_brightness else get_qr_cn()
def get_txt2img_pipe(model_id: str, use_brightness: bool):
key = (model_id, "2cn" if use_brightness else "1cn")
if key not in _CN_TXT2IMG:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=get_controlnets(use_brightness), # single or list
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_TXT2IMG[key] = _base_scheduler_for(pipe)
return _CN_TXT2IMG[key]
def get_img2img_pipe(model_id: str, use_brightness: bool):
key = (model_id, "2cn" if use_brightness else "1cn")
if key not in _CN_IMG2IMG:
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=get_controlnets(use_brightness), # single or list
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_IMG2IMG[key] = _base_scheduler_for(pipe)
return _CN_IMG2IMG[key]
# -------- core helpers --------
def _pick_brightness_image(mode: str,
qr_img: Image.Image,
init_img: Image.Image | None,
custom_img: Image.Image | None) -> Image.Image:
if mode == "init" and init_img is not None:
return init_img
if mode == "custom" and custom_img is not None:
return custom_img
return qr_img # default: use QR as brightness guide
# -------- Method 1: QR control model in text-to-image (+ optional Hi-Res Fix) --------
def _qr_txt2img_core(model_id: str,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
use_hires: bool, hires_upscale: float, hires_strength: float,
repair_strength: float, feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None):
s = snap8(size)
# --- Build base-size control images (s x s)
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
if use_brightness:
raw_bright_s = _pick_brightness_image(bright_mode, qr_img, None, bright_custom)
bright_img_s = prep_brightness_map(raw_bright_s, s, bright_mode) # Option A preprocessing
control_images_s = [qr_img, bright_img_s]
scales_s = [float(qr_weight), float(bright_weight)]
starts_s = [float(control_start), float(bright_start)]
ends_s = [float(control_end), float(bright_end)]
else:
control_images_s = qr_img
scales_s = float(qr_weight)
starts_s = float(control_start)
ends_s = float(control_end)
# Seed / generator
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
# --- Stage A: txt2img at s x s
pipe = get_txt2img_pipe(model_id, use_brightness)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type=DEV_AUTOCast, dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=control_images_s, # single or list @ s x s
controlnet_conditioning_scale=scales_s,
control_guidance_start=starts_s,
control_guidance_end=ends_s,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
lowres = out.images[0]
# --- Optional Stage B: Hi-Res Fix
final = lowres
qr_for_repair = qr_img # default (no hires)
if use_hires:
up = max(1.0, min(2.0, float(hires_upscale)))
W = snap8(int(s * up)); H = W
# Build HI-RES control images (W x H) to match output
qr_img_hi = resize_like(qr_img, W, H, method=Image.NEAREST)
if use_brightness:
raw_bright_hi = _pick_brightness_image(bright_mode, qr_img_hi, None, bright_custom)
bright_img_hi = prep_brightness_map(raw_bright_hi, W, bright_mode)
control_images_hi = [qr_img_hi, bright_img_hi]
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
else:
control_images_hi = qr_img_hi
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
pipe2 = get_img2img_pipe(model_id, use_brightness)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type=DEV_AUTOCast, dtype=DTYPE):
out2 = pipe2(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=lowres, # init @ s x s
control_image=control_images_hi, # single or list @ W x H
strength=float(hires_strength),
controlnet_conditioning_scale=scales_hi,
control_guidance_start=starts_hi,
control_guidance_end=ends_hi,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=W, height=H,
generator=gen,
)
final = out2.images[0]
qr_for_repair = qr_img_hi # ensure repair mask matches final size
# single, final gentle repair (optional)
final = enforce_qr_contrast(final, qr_for_repair, strength=float(repair_strength), feather=float(feather))
return final, lowres, qr_img
# ===================== helpers for img2img =====================
def center_square(im: Image.Image) -> Image.Image:
w, h = im.size
if w == h:
return im
if w > h:
off = (w - h) // 2
return im.crop((off, 0, off + h, h))
else:
off = (h - w) // 2
return im.crop((0, off, w, off + w))
def prep_init_image(init_img: Image.Image, target: int) -> Image.Image:
s = snap8(target)
im = center_square(init_img.convert("RGB"))
return im.resize((s, s), Image.LANCZOS)
# ================== img2img + QR Control core ==================
def _qr_img2img_core(model_id: str,
init_image: Image.Image,
url: str,
style_prompt: str,
negative: str,
steps: int,
cfg: float,
size: int,
border: int,
qr_weight: float,
seed: int,
strength: float,
repair_strength: float,
feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None,
bright_blur_px: float = 2.5, bright_gamma: float = 0.9, bright_autocontrast: bool = True,
bright_mix_alpha: float = 0.65):
s = snap8(size)
init = prep_init_image(init_image, s)
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
if use_brightness:
if bright_mode == "mix":
bright_img = blend_brightness_maps(qr_img, init, s,
alpha=float(bright_mix_alpha),
blur_px=float(bright_blur_px),
gamma=float(bright_gamma),
autocontrast=bool(bright_autocontrast))
else:
raw_bright = _pick_brightness_image(bright_mode, qr_img, init, bright_custom)
bright_img = prep_brightness_map(raw_bright, s, bright_mode,
blur_px=float(bright_blur_px),
gamma=float(bright_gamma),
autocontrast=bool(bright_autocontrast))
control_images = [qr_img, bright_img]
scales = [float(qr_weight), float(bright_weight)]
starts = [float(control_start), float(bright_start)]
ends = [float(control_end), float(bright_end)]
else:
control_images = qr_img
scales = float(qr_weight)
starts = float(control_start)
ends = float(control_end)
pipe = get_img2img_pipe(model_id, use_brightness)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type=DEV_AUTOCast, dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=init,
control_image=control_images, # single or list
strength=float(strength),
controlnet_conditioning_scale=scales,
control_guidance_start=starts,
control_guidance_end=ends, # QR end often 0.85–1.0; Brightness end ~0.8–0.9
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
final = out.images[0]
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
return final, init, qr_img
# ============== wrappers for Gradio ==============
@spaces.GPU(duration=120)
def qr_img2img_blend(model_key: str,
init_image: Image.Image,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
strength: float,
repair_strength: float, feather: float,
control_start: float, control_end: float,
use_brightness: bool, bright_weight: float,
bright_start: float, bright_end: float,
bright_mode: str, bright_custom: Image.Image | None,
bright_blur_px: float, bright_gamma: float, bright_autocontrast: bool,
bright_mix_alpha: float):
model_id = BASE_MODELS.get(model_key, BASE_MODELS["stable-diffusion-v1-5"])
return _qr_img2img_core(model_id,
init_image,
url, style_prompt, negative,
steps, cfg, size, border,
qr_weight, seed,
strength,
repair_strength, feather,
control_start, control_end,
use_brightness, bright_weight,
bright_start, bright_end,
bright_mode, bright_custom,
bright_blur_px, bright_gamma, bright_autocontrast,
bright_mix_alpha)
@spaces.GPU(duration=120)
def qr_txt2img_sd15(*args):
return _qr_txt2img_core(BASE_MODELS["stable-diffusion-v1-5"], *args)
@spaces.GPU(duration=120)
def qr_txt2img_dream(*args):
return _qr_txt2img_core(BASE_MODELS["dream"], *args)
# ---------- UI ----------
with gr.Blocks() as demo:
gr.Markdown("# ZeroGPU • QR Control (with optional Brightness ControlNet)")
# ---- Tab 1: stable-diffusion-v1-5 (Brightness forced ON) ----
with gr.Tab("stable-diffusion-v1-5"):
url1 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt1 = gr.Textbox(label="Style prompt", value="japanese painting, elegant shrine and torii, distant mount fuji, autumn maple trees, warm sunlight, 1girl in kimono, highly detailed, intricate patterns, anime key visual, dramatic composition")
s_negative1 = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, nsfw, watermark, text, low contrast, deformed, extra digits")
size1 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
steps1 = gr.Slider(10, 50, value=30, step=1, label="Steps")
cfg1 = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="CFG")
border1 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w1 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
seed1 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
cstart1 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend1 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
use_hires1 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up1 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str1 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
repair1 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather1 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
# Brightness — forced ON via hidden checkbox
use_bright1 = gr.Checkbox(value=True, visible=False)
bright_w1 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
bright_s1 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
bright_e1 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
bright_mode1 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
bright_ref1 = gr.Image(label="(Optional) custom brightness ref", type="pil")
final_img1 = gr.Image(label="Final (or Hi-Res) image")
low_img1 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img1 = gr.Image(label="Control QR used")
gr.Button("Generate with SD 1.5").click(
qr_txt2img_sd15,
[url1, s_prompt1, s_negative1, steps1, cfg1, size1, border1, qr_w1, seed1,
use_hires1, hires_up1, hires_str1, repair1, feather1,
cstart1, cend1,
use_bright1, bright_w1, bright_s1, bright_e1, bright_mode1, bright_ref1],
[final_img1, low_img1, ctrl_img1],
api_name="qr_txt2img_sd15"
)
# ---- Tab 2: DreamShaper 8 (Brightness forced ON) ----
with gr.Tab("DreamShaper 8"):
url2 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt2 = gr.Textbox(label="Style prompt", value="ornate baroque palace interior, gilded details, chandeliers, volumetric light, ultra detailed, cinematic")
s_negative2 = gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, watermark, text, bad anatomy")
size2 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
steps2 = gr.Slider(10, 50, value=30, step=1, label="Steps")
cfg2 = gr.Slider(1.0, 12.0, value=6.5, step=0.1, label="CFG")
border2 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w2 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
cstart2 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend2 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
use_hires2 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up2 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str2 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
repair2 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather2 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
use_bright2 = gr.Checkbox(value=True, visible=False)
bright_w2 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
bright_s2 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
bright_e2 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
bright_mode2 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
bright_ref2 = gr.Image(label="(Optional) custom brightness ref", type="pil")
final_img2 = gr.Image(label="Final (or Hi-Res) image")
low_img2 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img2 = gr.Image(label="Control QR used")
gr.Button("Generate with DreamShaper 8").click(
qr_txt2img_dream,
[url2, s_prompt2, s_negative2, steps2, cfg2, size2, border2, qr_w2, seed2,
use_hires2, hires_up2, hires_str2, repair2, feather2,
cstart2, cend2,
use_bright2, bright_w2, bright_s2, bright_e2, bright_mode2, bright_ref2],
[final_img2, low_img2, ctrl_img2],
api_name="qr_txt2img_dream"
)
# ------------------- Image Blend (img2img + QR) -------------------
with gr.Tab("Image Blend (img2img + QR)"):
m_key = gr.Dropdown(choices=list(BASE_MODELS.keys()),
value="stable-diffusion-v1-5",
label="Base model")
init_up = gr.Image(label="Upload base image", type="pil")
url_b = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt_b = gr.Textbox(label="Style prompt", value="highly detailed, cinematic lighting, rich textures")
s_negative_b = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, watermark, text")
size_b = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px, target)")
steps_b = gr.Slider(10, 50, value=30, step=1, label="Steps")
cfg_b = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="CFG")
border_b = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
qr_w_b = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
seed_b = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
# slightly higher default helps the QR emerge on img2img
strength_b = gr.Slider(0.2, 0.9, value=0.60, step=0.05, label="Img2Img denoise strength (blend amount)")
cstart_b = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
cend_b = gr.Slider(0.4, 1.0, value=0.85, step=0.05, label="QR control end")
repair_b = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather_b = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
# Brightness for img2img defaults ON; MIX keeps aesthetics + scanability
use_bright_b = gr.Checkbox(value=True, label="Add Brightness ControlNet")
bright_w_b = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
bright_s_b = gr.Slider(0.0, 0.8, value=0.40, step=0.05, label="Brightness start")
bright_e_b = gr.Slider(0.2, 1.0, value=0.85, step=0.05, label="Brightness end")
bright_mode_b = gr.Radio(choices=["mix","qr","init","custom"], value="mix", label="Brightness source")
bright_ref_b = gr.Image(label="(Optional) custom brightness ref", type="pil")
# Preprocessing knobs for Option A / mix
bright_blur_b = gr.Slider(0.0, 6.0, value=2.5, step=0.1, label="Brightness blur (px)")
bright_gamma_b = gr.Slider(0.6, 1.2, value=0.9, step=0.01, label="Brightness gamma")
bright_auto_b = gr.Checkbox(value=True, label="Brightness auto-contrast")
# Mix balance (0=init • 1=QR)
bright_mix_b = gr.Slider(0.0, 1.0, value=0.65, step=0.01, label="Brightness source mix")
final_b = gr.Image(label="Final blended image")
init_b = gr.Image(label="(Resized) init image used")
ctrl_b = gr.Image(label="Control QR used")
gr.Button("Blend Uploaded Image with QR").click(
qr_img2img_blend,
[m_key, init_up, url_b, s_prompt_b, s_negative_b, steps_b, cfg_b, size_b, border_b,
qr_w_b, seed_b, strength_b, repair_b, feather_b, cstart_b, cend_b,
use_bright_b, bright_w_b, bright_s_b, bright_e_b, bright_mode_b, bright_ref_b,
bright_blur_b, bright_gamma_b, bright_auto_b, bright_mix_b],
[final_b, init_b, ctrl_b],
api_name="qr_img2img_blend"
)
if __name__ == "__main__":
demo.queue(max_size=12).launch()