Tanut
first commit
32dec54
import os, gc, random, re
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline, # for Hi-Res Fix
ControlNetModel,
DPMSolverMultistepScheduler,
)
# Quiet matplotlib cache warning on Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
# ---- base models for the two tabs ----
BASE_MODELS = {
"stable-diffusion-v1-5": "runwayml/stable-diffusion-v1-5",
"dream": "Lykon/dreamshaper-8",
}
# ControlNet (QR Monster v2 for SD15)
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"
DTYPE = torch.float16
# ---------- helpers ----------
def snap8(x: int) -> int:
x = max(256, min(1024, int(x)))
return x - (x % 8)
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def make_qr(url="https://example.com", size=768, border=12, back_color="#FFFFFF", blur_radius=0.0):
"""
IMPORTANT for Method 1: give ControlNet a sharp, black-on-WHITE QR (no blur).
"""
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
img = img.resize((int(size), int(size)), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.0, feather: float = 1.0) -> Image.Image:
"""Optional gentle repair. Default OFF for Method 1."""
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None])
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# ---------- lazy pipelines (CPU-offloaded for ZeroGPU) ----------
_CN = None # shared ControlNet QR Monster
_CN_TXT2IMG = {} # per-base-model txt2img pipes
_CN_IMG2IMG = {} # per-base-model img2img pipes
def _base_scheduler_for(pipe):
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
return pipe
def get_cn():
global _CN
if _CN is None:
_CN = ControlNetModel.from_pretrained(CN_QRMON, torch_dtype=DTYPE, use_safetensors=True)
return _CN
def get_qrmon_txt2img_pipe(model_id: str):
if model_id not in _CN_TXT2IMG:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=get_cn(),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_TXT2IMG[model_id] = _base_scheduler_for(pipe)
return _CN_TXT2IMG[model_id]
def get_qrmon_img2img_pipe(model_id: str):
if model_id not in _CN_IMG2IMG:
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=get_cn(),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_IMG2IMG[model_id] = _base_scheduler_for(pipe)
return _CN_IMG2IMG[model_id]
# -------- Method 1: QR control model in text-to-image (+ optional Hi-Res Fix) --------
def _qr_txt2img_core(model_id: str,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
use_hires: bool, hires_upscale: float, hires_strength: float,
repair_strength: float, feather: float):
s = snap8(size)
# Control image: crisp black-on-white QR
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
# Seed / generator
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device="cuda").manual_seed(int(seed))
# --- Stage A: txt2img with ControlNet
pipe = get_qrmon_txt2img_pipe(model_id)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=qr_img, # control image for txt2img
controlnet_conditioning_scale=float(qr_weight), # ~1.0–1.2 works well
control_guidance_start=0.0,
control_guidance_end=1.0,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
lowres = out.images[0]
lowres = enforce_qr_contrast(lowres, qr_img, strength=float(repair_strength), feather=float(feather))
# --- Optional Stage B: Hi-Res Fix (img2img with same QR)
final = lowres
if use_hires:
up = max(1.0, min(2.0, float(hires_upscale)))
W = snap8(int(s * up)); H = W
pipe2 = get_qrmon_img2img_pipe(model_id)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out2 = pipe2(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=lowres, # init image
control_image=qr_img, # same QR
strength=float(hires_strength), # ~0.7 like "Hires Fix"
controlnet_conditioning_scale=float(qr_weight),
control_guidance_start=0.0,
control_guidance_end=1.0,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=W, height=H,
generator=gen,
)
final = out2.images[0]
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
return final, lowres, qr_img
# ===================== NEW: helpers for img2img =====================
def center_square(im: Image.Image) -> Image.Image:
"""Center-crop to square (keeps max area)."""
w, h = im.size
if w == h:
return im
if w > h:
off = (w - h) // 2
return im.crop((off, 0, off + h, h))
else:
off = (h - w) // 2
return im.crop((0, off, w, off + w))
def prep_init_image(init_img: Image.Image, target: int) -> Image.Image:
"""Center-crop to square, then resize to target (multiple of 8)."""
s = snap8(target)
im = center_square(init_img.convert("RGB"))
return im.resize((s, s), Image.LANCZOS)
# ================== NEW: img2img + QR Control core ==================
def _qr_img2img_core(model_id: str,
init_image: Image.Image,
url: str,
style_prompt: str,
negative: str,
steps: int,
cfg: float,
size: int,
border: int,
qr_weight: float,
seed: int,
strength: float, # how strongly to transform the init image (0.2–0.8 typical)
repair_strength: float,
feather: float):
"""
Blend an uploaded image with a scannable QR pattern:
- SD (img2img) generates/stylizes from init_image
- ControlNet (QR Monster) enforces QR structure
"""
# target square
s = snap8(size)
init = prep_init_image(init_image, s)
# crisp control QR
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
# seed/generator
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device="cuda").manual_seed(int(seed))
pipe = get_qrmon_img2img_pipe(model_id)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# run
with torch.autocast(device_type="cuda", dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=init, # init image (img2img)
control_image=qr_img, # ControlNet input (QR)
strength=float(strength), # how far to move from init image
controlnet_conditioning_scale=float(qr_weight),
control_guidance_start=0.0,
control_guidance_end=0.85,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
final = out.images[0]
# optional gentle repair to nudge contrast inside QR cells
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
# we’ll also return the resized init and QR used for UI
return final, init, qr_img
# ============== NEW: wrapper so Gradio can bind with api_name ==========
@spaces.GPU(duration=120)
def qr_img2img_blend(model_key: str,
init_image: Image.Image,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
strength: float, # img2img denoise strength
repair_strength: float, feather: float):
"""
model_key is one of BASE_MODELS keys; we resolve to model_id here.
"""
model_id = BASE_MODELS.get(model_key, BASE_MODELS["stable-diffusion-v1-5"])
return _qr_img2img_core(model_id,
init_image,
url, style_prompt, negative,
steps, cfg, size, border,
qr_weight, seed,
strength,
repair_strength, feather)
# Wrappers for each tab (so Gradio can bind without passing the model id)
@spaces.GPU(duration=120)
def qr_txt2img_sd15(*args):
return _qr_txt2img_core(BASE_MODELS["stable-diffusion-v1-5"], *args)
@spaces.GPU(duration=120)
def qr_txt2img_dream(*args):
return _qr_txt2img_core(BASE_MODELS["dream"], *args)
# ---------- UI ----------
with gr.Blocks() as demo:
gr.Markdown("# ZeroGPU • Method 1: QR Control (two base models)")
# ---- Tab 1: stable-diffusion-v1-5 (anime/illustration) ----
with gr.Tab("stable-diffusion-v1-5"):
url1 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt1 = gr.Textbox(label="Style prompt", value="japanese painting, elegant shrine and torii, distant mount fuji, autumn maple trees, warm sunlight, 1girl in kimono, highly detailed, intricate patterns, anime key visual, dramatic composition")
s_negative1= gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, nsfw, watermark, text, low contrast, deformed, extra digits")
size1 = gr.Slider(384, 1024, value=512, step=64, label="Canvas (px)")
steps1 = gr.Slider(10, 50, value=20, step=1, label="Steps")
cfg1 = gr.Slider(1.0, 12.0, value=7.0, step=0.1, label="CFG")
border1 = gr.Slider(2, 16, value=4, step=1, label="QR border (quiet zone)")
qr_w1 = gr.Slider(0.6, 1.6, value=1.5, step=0.05, label="QR control weight")
seed1 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
use_hires1 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up1 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str1 = gr.Slider(0.3, 0.9, value=0.7, step=0.05, label="Hi-Res denoise strength")
repair1 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather1 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
final_img1 = gr.Image(label="Final (or Hi-Res) image")
low_img1 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img1 = gr.Image(label="Control QR used")
gr.Button("Generate with stable-diffusion-v1-5").click(
qr_txt2img_sd15,
[url1, s_prompt1, s_negative1, steps1, cfg1, size1, border1, qr_w1, seed1,
use_hires1, hires_up1, hires_str1, repair1, feather1],
[final_img1, low_img1, ctrl_img1],
api_name="qr_txt2img_sd15"
)
# ---- Tab 2: DreamShaper (general art/painterly) ----
with gr.Tab("DreamShaper 8"):
url2 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt2 = gr.Textbox(label="Style prompt", value="ornate baroque palace interior, gilded details, chandeliers, volumetric light, ultra detailed, cinematic")
s_negative2= gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, watermark, text, bad anatomy")
size2 = gr.Slider(384, 1024, value=512, step=64, label="Canvas (px)")
steps2 = gr.Slider(10, 50, value=24, step=1, label="Steps")
cfg2 = gr.Slider(1.0, 12.0, value=6.8, step=0.1, label="CFG")
border2 = gr.Slider(2, 16, value=8, step=1, label="QR border (quiet zone)")
qr_w2 = gr.Slider(0.6, 1.6, value=1.5, step=0.05, label="QR control weight")
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
use_hires2 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up2 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str2 = gr.Slider(0.3, 0.9, value=0.7, step=0.05, label="Hi-Res denoise strength")
repair2 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather2 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
final_img2 = gr.Image(label="Final (or Hi-Res) image")
low_img2 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img2 = gr.Image(label="Control QR used")
gr.Button("Generate with DreamShaper 8").click(
qr_txt2img_dream,
[url2, s_prompt2, s_negative2, steps2, cfg2, size2, border2, qr_w2, seed2,
use_hires2, hires_up2, hires_str2, repair2, feather2],
[final_img2, low_img2, ctrl_img2],
api_name="qr_txt2img_dream"
)
# ------------------- NEW TAB: Image Blend (img2img) -------------------
with gr.Tab("Image Blend (img2img + QR)"):
# choose base model via dropdown (no need for separate tabs)
m_key = gr.Dropdown(choices=list(BASE_MODELS.keys()),
value="stable-diffusion-v1-5",
label="Base model")
init_up = gr.Image(label="Upload base image", type="pil")
url_b = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt_b = gr.Textbox(label="Style prompt", value="highly detailed, cinematic lighting, rich textures")
s_negative_b = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, watermark, text")
size_b = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px, target)")
steps_b = gr.Slider(10, 50, value=28, step=1, label="Steps")
cfg_b = gr.Slider(1.0, 12.0, value=7.0, step=0.1, label="CFG")
border_b = gr.Slider(2, 16, value=8, step=1, label="QR border (quiet zone)")
qr_w_b = gr.Slider(0.6, 1.6, value=1.2, step=0.05, label="QR control weight")
seed_b = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
# img2img denoise strength controls how much we change the uploaded image
strength_b = gr.Slider(0.2, 0.9, value=0.55, step=0.05, label="Img2Img denoise strength (blend amount)")
repair_b = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather_b = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
final_b = gr.Image(label="Final blended image")
init_b = gr.Image(label="(Resized) init image used")
ctrl_b = gr.Image(label="Control QR used")
gr.Button("Blend Uploaded Image with QR").click(
qr_img2img_blend,
[m_key, init_up, url_b, s_prompt_b, s_negative_b, steps_b, cfg_b, size_b, border_b,
qr_w_b, seed_b, strength_b, repair_b, feather_b],
[final_b, init_b, ctrl_b],
api_name="qr_img2img_blend"
)
if __name__ == "__main__":
demo.queue(max_size=12).launch()