Tanut
commited on
Commit
·
4032532
1
Parent(s):
91d463e
Edit for displaying
Browse files
app.py
CHANGED
|
@@ -1,644 +1,14 @@
|
|
| 1 |
-
import os, gc, random, re, inspect
|
| 2 |
-
from contextlib import nullcontext
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
import numpy as np
|
| 8 |
-
import qrcode
|
| 9 |
-
from qrcode.constants import ERROR_CORRECT_H
|
| 10 |
-
from diffusers import (
|
| 11 |
-
StableDiffusionControlNetPipeline,
|
| 12 |
-
StableDiffusionControlNetImg2ImgPipeline, # for Hi-Res Fix
|
| 13 |
-
ControlNetModel,
|
| 14 |
-
DPMSolverMultistepScheduler,
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
# ------------------- env / runtime -------------------
|
| 18 |
-
# Quiet matplotlib cache warning on Spaces
|
| 19 |
-
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
|
| 20 |
-
|
| 21 |
-
# Optional: faster model downloads on Spaces
|
| 22 |
-
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
| 23 |
-
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 24 |
-
|
| 25 |
-
# Hugging Face token (add it in Space Settings → Variables and secrets)
|
| 26 |
-
HF_TOKEN = os.environ.get("HUGGINGFACE_HUB_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 27 |
-
|
| 28 |
-
# Device / dtype (CPU-safe)
|
| 29 |
-
IS_CUDA = torch.cuda.is_available()
|
| 30 |
-
IS_MPS = getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
| 31 |
-
DTYPE = torch.float16 if (IS_CUDA or IS_MPS) else torch.float32
|
| 32 |
-
DEV_TORCH = "cuda" if IS_CUDA else ("mps" if IS_MPS else "cpu")
|
| 33 |
-
|
| 34 |
-
def autocast_ctx():
|
| 35 |
-
if IS_CUDA:
|
| 36 |
-
return torch.autocast(device_type="cuda", dtype=torch.float16)
|
| 37 |
-
if IS_MPS:
|
| 38 |
-
# MPS autocast uses fp16 path; acceptable for SD 1.5 on macOS
|
| 39 |
-
return torch.autocast(device_type="mps", dtype=torch.float16)
|
| 40 |
-
return nullcontext() # CPU: no autocast
|
| 41 |
-
|
| 42 |
-
# ------------------- models -------------------
|
| 43 |
-
BASE_MODELS = {
|
| 44 |
-
"stable-diffusion-v1-5": "runwayml/stable-diffusion-v1-5",
|
| 45 |
-
"dream": "Lykon/dreamshaper-8",
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
# ControlNets
|
| 49 |
-
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"
|
| 50 |
-
CN_BRIGHT = "latentcat/control_v1p_sd15_brightness"
|
| 51 |
-
|
| 52 |
-
# ---------- helpers ----------
|
| 53 |
-
def resize_like(im: Image.Image, width: int, height: int, method=Image.NEAREST) -> Image.Image:
|
| 54 |
-
if im.size == (width, height):
|
| 55 |
-
return im
|
| 56 |
-
return im.resize((int(width), int(height)), method)
|
| 57 |
-
|
| 58 |
-
def ensure_rgb_img(x):
|
| 59 |
-
if isinstance(x, Image.Image):
|
| 60 |
-
return x.convert("RGB")
|
| 61 |
-
if isinstance(x, np.ndarray):
|
| 62 |
-
a = x
|
| 63 |
-
if a.dtype != np.uint8:
|
| 64 |
-
a = np.clip(a, 0, 255).astype(np.uint8)
|
| 65 |
-
if a.ndim == 2:
|
| 66 |
-
return Image.fromarray(a, mode="L").convert("RGB")
|
| 67 |
-
return Image.fromarray(a).convert("RGB")
|
| 68 |
-
if torch.is_tensor(x):
|
| 69 |
-
t = x.detach().cpu()
|
| 70 |
-
if t.ndim == 3 and t.shape[0] in (1, 3):
|
| 71 |
-
t = t.permute(1, 2, 0)
|
| 72 |
-
arr = t.numpy()
|
| 73 |
-
if arr.max() <= 1.0:
|
| 74 |
-
arr = arr * 255.0
|
| 75 |
-
arr = np.clip(arr, 0, 255).astype(np.uint8)
|
| 76 |
-
if arr.ndim == 2:
|
| 77 |
-
return Image.fromarray(arr, mode="L").convert("RGB")
|
| 78 |
-
return Image.fromarray(arr).convert("RGB")
|
| 79 |
-
raise ValueError(f"Unsupported image type for ensure_rgb_img: {type(x)}")
|
| 80 |
-
|
| 81 |
-
def snap8(x: int) -> int:
|
| 82 |
-
x = max(256, min(1024, int(x)))
|
| 83 |
-
return x - (x % 8)
|
| 84 |
-
|
| 85 |
-
def normalize_color(c):
|
| 86 |
-
if c is None: return "white"
|
| 87 |
-
if isinstance(c, (tuple, list)):
|
| 88 |
-
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
|
| 89 |
-
if isinstance(c, str):
|
| 90 |
-
s = c.strip()
|
| 91 |
-
if s.startswith("#"): return s
|
| 92 |
-
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
|
| 93 |
-
if m:
|
| 94 |
-
r = int(max(0, min(255, round(float(m.group(1))))))
|
| 95 |
-
g = int(max(0, min(255, round(float(m.group(2))))))
|
| 96 |
-
b = int(max(0, min(255, round(float(m.group(3))))))
|
| 97 |
-
return (r, g, b)
|
| 98 |
-
return s
|
| 99 |
-
return "white"
|
| 100 |
-
|
| 101 |
-
def make_qr(url="https://example.com", size=768, border=12, back_color="#FFFFFF", blur_radius=0.0):
|
| 102 |
-
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
|
| 103 |
-
qr.add_data(url.strip()); qr.make(fit=True)
|
| 104 |
-
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
|
| 105 |
-
img = img.resize((int(size), int(size)), Image.NEAREST)
|
| 106 |
-
if blur_radius and blur_radius > 0:
|
| 107 |
-
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
|
| 108 |
-
return img
|
| 109 |
-
|
| 110 |
-
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.0, feather: float = 1.0) -> Image.Image:
|
| 111 |
-
if strength <= 0: return stylized
|
| 112 |
-
q = qr_img.convert("L")
|
| 113 |
-
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
|
| 114 |
-
black = np.asarray(black_mask, dtype=np.float32) / 255.0
|
| 115 |
-
white = 1.0 - black
|
| 116 |
-
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
|
| 117 |
-
s = s * (1.0 - float(strength) * black[..., None])
|
| 118 |
-
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
|
| 119 |
-
s = np.clip(s, 0.0, 1.0)
|
| 120 |
-
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
|
| 121 |
-
|
| 122 |
-
# ----- Brightness map preprocessing & mixing -----
|
| 123 |
-
def prep_brightness_map(img: Image.Image, size: int, source: str,
|
| 124 |
-
blur_px: float = 3.0, gamma: float = 0.9, autocontrast: bool = True) -> Image.Image:
|
| 125 |
-
method = Image.NEAREST if source == "qr" else Image.LANCZOS
|
| 126 |
-
im = img.resize((size, size), method).convert("L")
|
| 127 |
-
if source != "qr":
|
| 128 |
-
if autocontrast:
|
| 129 |
-
im = ImageOps.autocontrast(im, cutoff=2)
|
| 130 |
-
if blur_px and blur_px > 0:
|
| 131 |
-
im = im.filter(ImageFilter.GaussianBlur(radius=float(blur_px)))
|
| 132 |
-
if gamma and gamma != 1.0:
|
| 133 |
-
arr = np.asarray(im, dtype=np.float32) / 255.0
|
| 134 |
-
arr = np.clip(arr ** float(gamma), 0.0, 1.0)
|
| 135 |
-
im = Image.fromarray((arr * 255.0).astype(np.uint8), "L")
|
| 136 |
-
return im.convert("RGB")
|
| 137 |
-
|
| 138 |
-
def blend_brightness_maps(qr_img: Image.Image,
|
| 139 |
-
init_img: Image.Image,
|
| 140 |
-
size: int,
|
| 141 |
-
alpha: float,
|
| 142 |
-
blur_px: float = 2.5,
|
| 143 |
-
gamma: float = 0.9,
|
| 144 |
-
autocontrast: bool = True) -> Image.Image:
|
| 145 |
-
qr_map = prep_brightness_map(qr_img, size, "qr")
|
| 146 |
-
init_map = prep_brightness_map(init_img, size, "init",
|
| 147 |
-
blur_px=blur_px, gamma=gamma, autocontrast=autocontrast)
|
| 148 |
-
qa = np.asarray(qr_map, dtype=np.float32)
|
| 149 |
-
ia = np.asarray(init_map, dtype=np.float32)
|
| 150 |
-
a = float(alpha)
|
| 151 |
-
mix = np.clip((1.0 - a) * ia + a * qa, 0, 255).astype(np.uint8)
|
| 152 |
-
return Image.fromarray(mix, mode="RGB")
|
| 153 |
-
|
| 154 |
-
# ---------- lazy pipelines / models ----------
|
| 155 |
-
_CN_QR = None
|
| 156 |
-
_CN_BR = None
|
| 157 |
-
_CN_TXT2IMG = {}
|
| 158 |
-
_CN_IMG2IMG = {}
|
| 159 |
-
|
| 160 |
-
def _base_scheduler_for(pipe):
|
| 161 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 162 |
-
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
|
| 163 |
-
)
|
| 164 |
-
pipe.enable_attention_slicing()
|
| 165 |
-
pipe.enable_vae_slicing()
|
| 166 |
-
pipe.enable_model_cpu_offload()
|
| 167 |
-
return pipe
|
| 168 |
-
|
| 169 |
-
def get_qr_cn():
|
| 170 |
-
global _CN_QR
|
| 171 |
-
if _CN_QR is None:
|
| 172 |
-
_CN_QR = ControlNetModel.from_pretrained(
|
| 173 |
-
CN_QRMON, torch_dtype=DTYPE, use_safetensors=True, token=HF_TOKEN
|
| 174 |
-
)
|
| 175 |
-
return _CN_QR
|
| 176 |
-
|
| 177 |
-
def get_bright_cn():
|
| 178 |
-
global _CN_BR
|
| 179 |
-
if _CN_BR is None:
|
| 180 |
-
_CN_BR = ControlNetModel.from_pretrained(
|
| 181 |
-
CN_BRIGHT, torch_dtype=DTYPE, use_safetensors=True, token=HF_TOKEN
|
| 182 |
-
)
|
| 183 |
-
return _CN_BR
|
| 184 |
-
|
| 185 |
-
def get_controlnets(use_brightness: bool):
|
| 186 |
-
return [get_qr_cn(), get_bright_cn()] if use_brightness else get_qr_cn()
|
| 187 |
-
|
| 188 |
-
def get_txt2img_pipe(model_id: str, use_brightness: bool):
|
| 189 |
-
key = (model_id, "2cn" if use_brightness else "1cn")
|
| 190 |
-
if key not in _CN_TXT2IMG:
|
| 191 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 192 |
-
model_id,
|
| 193 |
-
controlnet=get_controlnets(use_brightness),
|
| 194 |
-
torch_dtype=DTYPE,
|
| 195 |
-
safety_checker=None,
|
| 196 |
-
use_safetensors=True,
|
| 197 |
-
low_cpu_mem_usage=True,
|
| 198 |
-
token=HF_TOKEN,
|
| 199 |
-
)
|
| 200 |
-
_CN_TXT2IMG[key] = _base_scheduler_for(pipe)
|
| 201 |
-
return _CN_TXT2IMG[key]
|
| 202 |
-
|
| 203 |
-
def get_img2img_pipe(model_id: str, use_brightness: bool):
|
| 204 |
-
key = (model_id, "2cn" if use_brightness else "1cn")
|
| 205 |
-
if key not in _CN_IMG2IMG:
|
| 206 |
-
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 207 |
-
model_id,
|
| 208 |
-
controlnet=get_controlnets(use_brightness),
|
| 209 |
-
torch_dtype=DTYPE,
|
| 210 |
-
safety_checker=None,
|
| 211 |
-
use_safetensors=True,
|
| 212 |
-
low_cpu_mem_usage=True,
|
| 213 |
-
token=HF_TOKEN,
|
| 214 |
-
)
|
| 215 |
-
_CN_IMG2IMG[key] = _base_scheduler_for(pipe)
|
| 216 |
-
return _CN_IMG2IMG[key]
|
| 217 |
-
|
| 218 |
-
# -------- core helpers --------
|
| 219 |
-
def _pick_brightness_image(mode: str,
|
| 220 |
-
qr_img: Image.Image,
|
| 221 |
-
init_img: Image.Image | None,
|
| 222 |
-
custom_img: Image.Image | None) -> Image.Image:
|
| 223 |
-
if mode == "init" and init_img is not None:
|
| 224 |
-
return init_img
|
| 225 |
-
if mode == "custom" and custom_img is not None:
|
| 226 |
-
return custom_img
|
| 227 |
-
return qr_img
|
| 228 |
-
|
| 229 |
-
# -------- Method 1: QR control model in text-to-image (+ optional Hi-Res Fix) --------
|
| 230 |
-
def _qr_txt2img_core(model_id: str,
|
| 231 |
-
url: str, style_prompt: str, negative: str,
|
| 232 |
-
steps: int, cfg: float, size: int, border: int,
|
| 233 |
-
qr_weight: float, seed: int,
|
| 234 |
-
use_hires: bool, hires_upscale: float, hires_strength: float,
|
| 235 |
-
repair_strength: float, feather: float,
|
| 236 |
-
control_start: float, control_end: float,
|
| 237 |
-
use_brightness: bool, bright_weight: float,
|
| 238 |
-
bright_start: float, bright_end: float,
|
| 239 |
-
bright_mode: str, bright_custom: Image.Image | None):
|
| 240 |
-
|
| 241 |
-
s = snap8(size)
|
| 242 |
-
|
| 243 |
-
# --- Build base-size control images (s x s)
|
| 244 |
-
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
|
| 245 |
-
if use_brightness:
|
| 246 |
-
raw_bright_s = _pick_brightness_image(bright_mode, qr_img, None, bright_custom)
|
| 247 |
-
bright_img_s = prep_brightness_map(raw_bright_s, s, bright_mode)
|
| 248 |
-
control_images_s = [ensure_rgb_img(qr_img), ensure_rgb_img(bright_img_s)]
|
| 249 |
-
scales_s = [float(qr_weight), float(bright_weight)]
|
| 250 |
-
starts_s = [float(control_start), float(bright_start)]
|
| 251 |
-
ends_s = [float(control_end), float(bright_end)]
|
| 252 |
-
else:
|
| 253 |
-
control_images_s = ensure_rgb_img(qr_img)
|
| 254 |
-
scales_s = float(qr_weight)
|
| 255 |
-
starts_s = float(control_start)
|
| 256 |
-
ends_s = float(control_end)
|
| 257 |
-
|
| 258 |
-
# Seed / generator
|
| 259 |
-
if int(seed) < 0:
|
| 260 |
-
seed = random.randint(0, 2**31 - 1)
|
| 261 |
-
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
|
| 262 |
-
|
| 263 |
-
# --- Stage A: txt2img at s x s
|
| 264 |
-
pipe = get_txt2img_pipe(model_id, use_brightness)
|
| 265 |
-
if torch.cuda.is_available():
|
| 266 |
-
torch.cuda.empty_cache()
|
| 267 |
-
gc.collect()
|
| 268 |
-
|
| 269 |
-
kwargs = dict(
|
| 270 |
-
prompt=str(style_prompt),
|
| 271 |
-
negative_prompt=str(negative or ""),
|
| 272 |
-
num_inference_steps=int(steps),
|
| 273 |
-
guidance_scale=float(cfg),
|
| 274 |
-
width=s, height=s,
|
| 275 |
-
generator=gen,
|
| 276 |
-
controlnet_conditioning_scale=scales_s,
|
| 277 |
-
control_guidance_start=starts_s,
|
| 278 |
-
control_guidance_end=ends_s,
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
# detect which argument the pipeline supports
|
| 282 |
-
sig = inspect.signature(pipe.__call__)
|
| 283 |
-
if "control_image" in sig.parameters:
|
| 284 |
-
kwargs["control_image"] = control_images_s
|
| 285 |
-
elif "image" in sig.parameters:
|
| 286 |
-
kwargs["image"] = control_images_s
|
| 287 |
-
else:
|
| 288 |
-
raise RuntimeError("Pipeline does not accept controlnet images")
|
| 289 |
-
|
| 290 |
-
with autocast_ctx():
|
| 291 |
-
out = pipe(**kwargs)
|
| 292 |
-
|
| 293 |
-
lowres = out.images[0]
|
| 294 |
-
|
| 295 |
-
# --- Stage B: optional hi-res
|
| 296 |
-
final = lowres
|
| 297 |
-
qr_for_repair = qr_img
|
| 298 |
-
if use_hires:
|
| 299 |
-
up = max(1.0, min(2.0, float(hires_upscale)))
|
| 300 |
-
W = snap8(int(s * up)); H = W
|
| 301 |
-
|
| 302 |
-
qr_img_hi = resize_like(qr_img, W, H, method=Image.NEAREST)
|
| 303 |
-
if use_brightness:
|
| 304 |
-
raw_bright_hi = _pick_brightness_image(bright_mode, qr_img_hi, None, bright_custom)
|
| 305 |
-
bright_img_hi = prep_brightness_map(raw_bright_hi, W, bright_mode)
|
| 306 |
-
control_images_hi = [ensure_rgb_img(qr_img_hi), ensure_rgb_img(bright_img_hi)]
|
| 307 |
-
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
|
| 308 |
-
else:
|
| 309 |
-
control_images_hi = ensure_rgb_img(qr_img_hi)
|
| 310 |
-
scales_hi = scales_s; starts_hi = starts_s; ends_hi = ends_s
|
| 311 |
-
|
| 312 |
-
pipe2 = get_img2img_pipe(model_id, use_brightness)
|
| 313 |
-
if torch.cuda.is_available():
|
| 314 |
-
torch.cuda.empty_cache()
|
| 315 |
-
gc.collect()
|
| 316 |
-
|
| 317 |
-
kwargs2 = dict(
|
| 318 |
-
prompt=str(style_prompt),
|
| 319 |
-
negative_prompt=str(negative or ""),
|
| 320 |
-
image=lowres,
|
| 321 |
-
strength=float(hires_strength),
|
| 322 |
-
num_inference_steps=int(steps),
|
| 323 |
-
guidance_scale=float(cfg),
|
| 324 |
-
width=W, height=H,
|
| 325 |
-
generator=gen,
|
| 326 |
-
controlnet_conditioning_scale=scales_hi,
|
| 327 |
-
control_guidance_start=starts_hi,
|
| 328 |
-
control_guidance_end=ends_hi,
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
sig2 = inspect.signature(pipe2.__call__)
|
| 332 |
-
if "control_image" in sig2.parameters:
|
| 333 |
-
kwargs2["control_image"] = control_images_hi
|
| 334 |
-
elif "image" in sig2.parameters:
|
| 335 |
-
kwargs2["image"] = control_images_hi
|
| 336 |
-
else:
|
| 337 |
-
raise RuntimeError("Img2Img pipeline does not accept controlnet images")
|
| 338 |
-
|
| 339 |
-
with autocast_ctx():
|
| 340 |
-
out2 = pipe2(**kwargs2)
|
| 341 |
-
|
| 342 |
-
final = out2.images[0]
|
| 343 |
-
qr_for_repair = qr_img_hi
|
| 344 |
-
|
| 345 |
-
final = enforce_qr_contrast(final, qr_for_repair,
|
| 346 |
-
strength=float(repair_strength),
|
| 347 |
-
feather=float(feather))
|
| 348 |
-
return final, lowres, qr_img
|
| 349 |
-
|
| 350 |
-
# ===================== helpers for img2img =====================
|
| 351 |
-
def center_square(im: Image.Image) -> Image.Image:
|
| 352 |
-
w, h = im.size
|
| 353 |
-
if w == h:
|
| 354 |
-
return im
|
| 355 |
-
if w > h:
|
| 356 |
-
off = (w - h) // 2
|
| 357 |
-
return im.crop((off, 0, off + h, h))
|
| 358 |
-
else:
|
| 359 |
-
off = (h - w) // 2
|
| 360 |
-
return im.crop((0, off, w, off + w))
|
| 361 |
-
|
| 362 |
-
def prep_init_image(init_img: Image.Image, target: int) -> Image.Image:
|
| 363 |
-
s = snap8(target)
|
| 364 |
-
im = center_square(init_img.convert("RGB"))
|
| 365 |
-
return im.resize((s, s), Image.LANCZOS)
|
| 366 |
-
|
| 367 |
-
# ================== img2img + QR Control core ==================
|
| 368 |
-
def _qr_img2img_core(model_id: str,
|
| 369 |
-
init_image: Image.Image,
|
| 370 |
-
url: str,
|
| 371 |
-
style_prompt: str,
|
| 372 |
-
negative: str,
|
| 373 |
-
steps: int,
|
| 374 |
-
cfg: float,
|
| 375 |
-
size: int,
|
| 376 |
-
border: int,
|
| 377 |
-
qr_weight: float,
|
| 378 |
-
seed: int,
|
| 379 |
-
strength: float,
|
| 380 |
-
repair_strength: float,
|
| 381 |
-
feather: float,
|
| 382 |
-
control_start: float, control_end: float,
|
| 383 |
-
use_brightness: bool, bright_weight: float,
|
| 384 |
-
bright_start: float, bright_end: float,
|
| 385 |
-
bright_mode: str, bright_custom: Image.Image | None,
|
| 386 |
-
bright_blur_px: float = 2.5, bright_gamma: float = 0.9, bright_autocontrast: bool = True,
|
| 387 |
-
bright_mix_alpha: float = 0.65):
|
| 388 |
-
|
| 389 |
-
s = snap8(size)
|
| 390 |
-
init = ensure_rgb_img(prep_init_image(init_image, s))
|
| 391 |
-
qr_img = ensure_rgb_img(make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0))
|
| 392 |
-
|
| 393 |
-
if int(seed) < 0:
|
| 394 |
-
seed = random.randint(0, 2**31 - 1)
|
| 395 |
-
gen = torch.Generator(device=DEV_TORCH).manual_seed(int(seed))
|
| 396 |
-
|
| 397 |
-
if use_brightness:
|
| 398 |
-
if bright_mode == "mix":
|
| 399 |
-
bright_img = blend_brightness_maps(qr_img, init, s,
|
| 400 |
-
alpha=float(bright_mix_alpha),
|
| 401 |
-
blur_px=float(bright_blur_px),
|
| 402 |
-
gamma=float(bright_gamma),
|
| 403 |
-
autocontrast=bool(bright_autocontrast))
|
| 404 |
-
else:
|
| 405 |
-
raw_bright = _pick_brightness_image(bright_mode, qr_img, init, bright_custom)
|
| 406 |
-
bright_img = prep_brightness_map(raw_bright, s, bright_mode,
|
| 407 |
-
blur_px=float(bright_blur_px),
|
| 408 |
-
gamma=float(bright_gamma),
|
| 409 |
-
autocontrast=bool(bright_autocontrast))
|
| 410 |
-
control_images = [ensure_rgb_img(qr_img), ensure_rgb_img(bright_img)]
|
| 411 |
-
scales = [float(qr_weight), float(bright_weight)]
|
| 412 |
-
starts = [float(control_start), float(bright_start)]
|
| 413 |
-
ends = [float(control_end), float(bright_end)]
|
| 414 |
-
else:
|
| 415 |
-
control_images = ensure_rgb_img(qr_img)
|
| 416 |
-
scales = float(qr_weight)
|
| 417 |
-
starts = float(control_start)
|
| 418 |
-
ends = float(control_end)
|
| 419 |
-
|
| 420 |
-
pipe = get_img2img_pipe(model_id, use_brightness)
|
| 421 |
-
if torch.cuda.is_available():
|
| 422 |
-
torch.cuda.empty_cache()
|
| 423 |
-
gc.collect()
|
| 424 |
-
|
| 425 |
-
kwargs = dict(
|
| 426 |
-
prompt=str(style_prompt),
|
| 427 |
-
negative_prompt=str(negative or ""),
|
| 428 |
-
image=init,
|
| 429 |
-
strength=float(strength),
|
| 430 |
-
num_inference_steps=int(steps),
|
| 431 |
-
guidance_scale=float(cfg),
|
| 432 |
-
width=s, height=s,
|
| 433 |
-
generator=gen,
|
| 434 |
-
controlnet_conditioning_scale=scales,
|
| 435 |
-
control_guidance_start=starts,
|
| 436 |
-
control_guidance_end=ends,
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
sig = inspect.signature(pipe.__call__)
|
| 440 |
-
if "control_image" in sig.parameters:
|
| 441 |
-
kwargs["control_image"] = control_images
|
| 442 |
-
elif "image" in sig.parameters and isinstance(control_images, list):
|
| 443 |
-
kwargs["image"] = [init] + control_images
|
| 444 |
-
else:
|
| 445 |
-
raise RuntimeError("Img2Img pipeline does not accept controlnet images")
|
| 446 |
-
|
| 447 |
-
with autocast_ctx():
|
| 448 |
-
out = pipe(**kwargs)
|
| 449 |
-
|
| 450 |
-
final = out.images[0]
|
| 451 |
-
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
|
| 452 |
-
return final, init, qr_img
|
| 453 |
-
|
| 454 |
-
# ============== wrappers for Gradio ==============
|
| 455 |
-
@spaces.GPU(duration=120)
|
| 456 |
-
def qr_img2img_blend(model_key: str,
|
| 457 |
-
init_image: Image.Image,
|
| 458 |
-
url: str, style_prompt: str, negative: str,
|
| 459 |
-
steps: int, cfg: float, size: int, border: int,
|
| 460 |
-
qr_weight: float, seed: int,
|
| 461 |
-
strength: float,
|
| 462 |
-
repair_strength: float, feather: float,
|
| 463 |
-
control_start: float, control_end: float,
|
| 464 |
-
use_brightness: bool, bright_weight: float,
|
| 465 |
-
bright_start: float, bright_end: float,
|
| 466 |
-
bright_mode: str, bright_custom: Image.Image | None,
|
| 467 |
-
bright_blur_px: float, bright_gamma: float, bright_autocontrast: bool,
|
| 468 |
-
bright_mix_alpha: float):
|
| 469 |
-
model_id = BASE_MODELS.get(model_key, BASE_MODELS["stable-diffusion-v1-5"])
|
| 470 |
-
return _qr_img2img_core(model_id,
|
| 471 |
-
init_image,
|
| 472 |
-
url, style_prompt, negative,
|
| 473 |
-
steps, cfg, size, border,
|
| 474 |
-
qr_weight, seed,
|
| 475 |
-
strength,
|
| 476 |
-
repair_strength, feather,
|
| 477 |
-
control_start, control_end,
|
| 478 |
-
use_brightness, bright_weight,
|
| 479 |
-
bright_start, bright_end,
|
| 480 |
-
bright_mode, bright_custom,
|
| 481 |
-
bright_blur_px, bright_gamma, bright_autocontrast,
|
| 482 |
-
bright_mix_alpha)
|
| 483 |
-
|
| 484 |
-
@spaces.GPU(duration=120)
|
| 485 |
-
def qr_txt2img_sd15(*args):
|
| 486 |
-
return _qr_txt2img_core(BASE_MODELS["stable-diffusion-v1-5"], *args)
|
| 487 |
-
|
| 488 |
-
@spaces.GPU(duration=120)
|
| 489 |
-
def qr_txt2img_dream(*args):
|
| 490 |
-
return _qr_txt2img_core(BASE_MODELS["dream"], *args)
|
| 491 |
-
|
| 492 |
-
# ---------- UI ----------
|
| 493 |
-
with gr.Blocks() as demo:
|
| 494 |
-
gr.Markdown("# ZeroGPU • QR Control (with optional Brightness ControlNet)")
|
| 495 |
-
|
| 496 |
-
# ---- Tab 1: stable-diffusion-v1-5 (Brightness forced ON) ----
|
| 497 |
-
with gr.Tab("stable-diffusion-v1-5"):
|
| 498 |
-
url1 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
|
| 499 |
-
s_prompt1 = gr.Textbox(label="Style prompt", value="japanese painting, elegant shrine and torii, distant mount fuji, autumn maple trees, warm sunlight, 1girl in kimono, highly detailed, intricate patterns, anime key visual, dramatic composition")
|
| 500 |
-
s_negative1 = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, nsfw, watermark, text, low contrast, deformed, extra digits")
|
| 501 |
-
size1 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
|
| 502 |
-
steps1 = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
| 503 |
-
cfg1 = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="CFG")
|
| 504 |
-
border1 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
|
| 505 |
-
qr_w1 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
|
| 506 |
-
seed1 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
|
| 507 |
-
|
| 508 |
-
cstart1 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
|
| 509 |
-
cend1 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
|
| 510 |
-
|
| 511 |
-
use_hires1 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
|
| 512 |
-
hires_up1 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
|
| 513 |
-
hires_str1 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
|
| 514 |
-
|
| 515 |
-
repair1 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
|
| 516 |
-
feather1 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
|
| 517 |
-
|
| 518 |
-
use_bright1 = gr.Checkbox(value=True, visible=False)
|
| 519 |
-
bright_w1 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
|
| 520 |
-
bright_s1 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
|
| 521 |
-
bright_e1 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
|
| 522 |
-
bright_mode1 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
|
| 523 |
-
bright_ref1 = gr.Image(label="(Optional) custom brightness ref", type="pil")
|
| 524 |
-
|
| 525 |
-
final_img1 = gr.Image(label="Final (or Hi-Res) image")
|
| 526 |
-
low_img1 = gr.Image(label="Low-res (Stage A) preview")
|
| 527 |
-
ctrl_img1 = gr.Image(label="Control QR used")
|
| 528 |
-
|
| 529 |
-
gr.Button("Generate with SD 1.5").click(
|
| 530 |
-
qr_txt2img_sd15,
|
| 531 |
-
[url1, s_prompt1, s_negative1, steps1, cfg1, size1, border1, qr_w1, seed1,
|
| 532 |
-
use_hires1, hires_up1, hires_str1, repair1, feather1,
|
| 533 |
-
cstart1, cend1,
|
| 534 |
-
use_bright1, bright_w1, bright_s1, bright_e1, bright_mode1, bright_ref1],
|
| 535 |
-
[final_img1, low_img1, ctrl_img1],
|
| 536 |
-
api_name="qr_txt2img_sd15"
|
| 537 |
-
)
|
| 538 |
-
|
| 539 |
-
# ---- Tab 2: DreamShaper 8 (Brightness forced ON) ----
|
| 540 |
-
with gr.Tab("DreamShaper 8"):
|
| 541 |
-
url2 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
|
| 542 |
-
s_prompt2 = gr.Textbox(label="Style prompt", value="ornate baroque palace interior, gilded details, chandeliers, volumetric light, ultra detailed, cinematic")
|
| 543 |
-
s_negative2 = gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, watermark, text, bad anatomy")
|
| 544 |
-
size2 = gr.Slider(384, 1024, value=640, step=64, label="Canvas (px)")
|
| 545 |
-
steps2 = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
| 546 |
-
cfg2 = gr.Slider(1.0, 12.0, value=6.5, step=0.1, label="CFG")
|
| 547 |
-
border2 = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
|
| 548 |
-
qr_w2 = gr.Slider(0.8, 1.8, value=1.6, step=0.05, label="QR control weight")
|
| 549 |
-
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
|
| 550 |
-
|
| 551 |
-
cstart2 = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
|
| 552 |
-
cend2 = gr.Slider(0.4, 1.0, value=1.0, step=0.05, label="QR control end")
|
| 553 |
-
|
| 554 |
-
use_hires2 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
|
| 555 |
-
hires_up2 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
|
| 556 |
-
hires_str2 = gr.Slider(0.30, 0.60, value=0.45, step=0.05, label="Hi-Res denoise strength")
|
| 557 |
-
|
| 558 |
-
repair2 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
|
| 559 |
-
feather2 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
|
| 560 |
-
|
| 561 |
-
use_bright2 = gr.Checkbox(value=True, visible=False)
|
| 562 |
-
bright_w2 = gr.Slider(0.0, 0.5, value=0.15, step=0.01, label="Brightness weight")
|
| 563 |
-
bright_s2 = gr.Slider(0.0, 0.8, value=0.10, step=0.05, label="Brightness start")
|
| 564 |
-
bright_e2 = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
|
| 565 |
-
bright_mode2 = gr.Radio(choices=["qr","custom"], value="qr", label="Brightness source")
|
| 566 |
-
bright_ref2 = gr.Image(label="(Optional) custom brightness ref", type="pil")
|
| 567 |
-
|
| 568 |
-
final_img2 = gr.Image(label="Final (or Hi-Res) image")
|
| 569 |
-
low_img2 = gr.Image(label="Low-res (Stage A) preview")
|
| 570 |
-
ctrl_img2 = gr.Image(label="Control QR used")
|
| 571 |
-
|
| 572 |
-
gr.Button("Generate with DreamShaper 8").click(
|
| 573 |
-
qr_txt2img_dream,
|
| 574 |
-
[url2, s_prompt2, s_negative2, steps2, cfg2, size2, border2, qr_w2, seed2,
|
| 575 |
-
use_hires2, hires_up2, hires_str2, repair2, feather2,
|
| 576 |
-
cstart2, cend2,
|
| 577 |
-
use_bright2, bright_w2, bright_s2, bright_e2, bright_mode2, bright_ref2],
|
| 578 |
-
[final_img2, low_img2, ctrl_img2],
|
| 579 |
-
api_name="qr_txt2img_dream"
|
| 580 |
-
)
|
| 581 |
-
|
| 582 |
-
# ------------------- Image Blend (img2img + QR) -------------------
|
| 583 |
-
with gr.Tab("Image Blend (img2img + QR)"):
|
| 584 |
-
m_key = gr.Dropdown(choices=list(BASE_MODELS.keys()),
|
| 585 |
-
value="stable-diffusion-v1-5",
|
| 586 |
-
label="Base model")
|
| 587 |
-
|
| 588 |
-
init_up = gr.Image(label="Upload base image", type="pil")
|
| 589 |
-
|
| 590 |
-
url_b = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
|
| 591 |
-
s_prompt_b = gr.Textbox(label="Style prompt", value="highly detailed, cinematic lighting, rich textures")
|
| 592 |
-
s_negative_b = gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, watermark, text")
|
| 593 |
-
|
| 594 |
-
size_b = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px, target)")
|
| 595 |
-
steps_b = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
| 596 |
-
cfg_b = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="CFG")
|
| 597 |
-
|
| 598 |
-
border_b = gr.Slider(2, 20, value=12, step=1, label="QR border (quiet zone)")
|
| 599 |
-
qr_w_b = gr.Slider(0.8, 1.8, value=1.8, step=0.05, label="QR control weight")
|
| 600 |
-
seed_b = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
|
| 601 |
-
|
| 602 |
-
strength_b = gr.Slider(0.2, 0.9, value=0.70, step=0.05, label="Img2Img denoise strength (blend amount)")
|
| 603 |
-
|
| 604 |
-
cstart_b = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="QR control start")
|
| 605 |
-
cend_b = gr.Slider(0.4, 1.0, value=0.95, step=0.05, label="QR control end")
|
| 606 |
-
|
| 607 |
-
repair_b = gr.Slider(0.0, 1.0, value=0.1, step=0.05, label="Post repair strength (optional)")
|
| 608 |
-
feather_b = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
|
| 609 |
-
|
| 610 |
-
use_bright_b = gr.Checkbox(value=True, label="Add Brightness ControlNet")
|
| 611 |
-
bright_w_b = gr.Slider(0.0, 0.5, value=0.25, step=0.01, label="Brightness weight")
|
| 612 |
-
bright_s_b = gr.Slider(0.0, 0.8, value=0.40, step=0.05, label="Brightness start")
|
| 613 |
-
bright_e_b = gr.Slider(0.2, 1.0, value=0.80, step=0.05, label="Brightness end")
|
| 614 |
-
bright_mode_b = gr.Radio(choices=["mix","qr","init","custom"], value="mix", label="Brightness source")
|
| 615 |
-
bright_ref_b = gr.Image(label="(Optional) custom brightness ref", type="pil")
|
| 616 |
-
|
| 617 |
-
bright_blur_b = gr.Slider(0.0, 6.0, value=2.5, step=0.1, label="Brightness blur (px)")
|
| 618 |
-
bright_gamma_b = gr.Slider(0.6, 1.2, value=0.9, step=0.01, label="Brightness gamma")
|
| 619 |
-
bright_auto_b = gr.Checkbox(value=True, label="Brightness auto-contrast")
|
| 620 |
-
|
| 621 |
-
bright_mix_b = gr.Slider(0.0, 1.0, value=0.65, step=0.01, label="Brightness source mix")
|
| 622 |
-
|
| 623 |
-
final_b = gr.Image(label="Final blended image")
|
| 624 |
-
init_b = gr.Image(label="(Resized) init image used")
|
| 625 |
-
ctrl_b = gr.Image(label="Control QR used")
|
| 626 |
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
[m_key, init_up, url_b, s_prompt_b, s_negative_b, steps_b, cfg_b, size_b, border_b,
|
| 630 |
-
qr_w_b, seed_b, strength_b, repair_b, feather_b, cstart_b, cend_b,
|
| 631 |
-
use_bright_b, bright_w_b, bright_s_b, bright_e_b, bright_mode_b, bright_ref_b,
|
| 632 |
-
bright_blur_b, bright_gamma_b, bright_auto_b, bright_mix_b],
|
| 633 |
-
[final_b, init_b, ctrl_b],
|
| 634 |
-
api_name="qr_img2img_blend"
|
| 635 |
-
)
|
| 636 |
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
show_api=False, # optional: quieter UI
|
| 642 |
-
share=False, # Spaces provides the public URL
|
| 643 |
-
)
|
| 644 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
zero = torch.Tensor([0]).cuda()
|
| 6 |
+
print(zero.device) # <-- 'cpu' 🤔
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
@spaces.GPU
|
| 9 |
+
def greet(n):
|
| 10 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
| 11 |
+
return f"Hello {zero + n} Tensor"
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
| 14 |
+
demo.launch()
|