Spaces:
Sleeping
Sleeping
GitHub Actions
commited on
Commit
·
3e8073f
1
Parent(s):
0d29386
🚀 Deploy embedder from GitHub Actions - 2025-10-27 22:54:05
Browse files- README.md +276 -0
- embedder.py +61 -1
- requirements.txt +6 -6
README.md
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: MobileCLIP2 Embedder
|
| 3 |
+
emoji: 🖼️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_port: 7860
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# MobileCLIP2-S2 Embedding Service
|
| 11 |
+
|
| 12 |
+
ONNX-optimized FastAPI service for generating 512-dimensional image embeddings using Apple's MobileCLIP2-S2.
|
| 13 |
+
|
| 14 |
+
## Features
|
| 15 |
+
|
| 16 |
+
- **Fast**: ONNX Runtime CPU optimizations
|
| 17 |
+
- **Memory Efficient**: <2GB RAM footprint
|
| 18 |
+
- **Batch Processing**: Up to 10 images per request
|
| 19 |
+
- **RESTful API**: Simple HTTP endpoints
|
| 20 |
+
|
| 21 |
+
## API Usage
|
| 22 |
+
|
| 23 |
+
### Single Image
|
| 24 |
+
|
| 25 |
+
```bash
|
| 26 |
+
curl -X POST "https://YOUR_SPACE_URL/embed" \
|
| 27 |
+
-F "[email protected]"
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
**Response:**
|
| 31 |
+
```json
|
| 32 |
+
{
|
| 33 |
+
"embedding": [0.123, -0.456, ...], // 512 floats
|
| 34 |
+
"model": "MobileCLIP-S2",
|
| 35 |
+
"inference_time_ms": 123.45
|
| 36 |
+
}
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
### Batch Processing
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
curl -X POST "https://YOUR_SPACE_URL/embed/batch" \
|
| 43 |
+
-F "[email protected]" \
|
| 44 |
+
-F "[email protected]"
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
**Response:**
|
| 48 |
+
```json
|
| 49 |
+
{
|
| 50 |
+
"embeddings": [[0.123, ...], [0.456, ...]],
|
| 51 |
+
"count": 2,
|
| 52 |
+
"total_time_ms": 234.56,
|
| 53 |
+
"model": "MobileCLIP-S2"
|
| 54 |
+
}
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### Health Check
|
| 58 |
+
|
| 59 |
+
```bash
|
| 60 |
+
curl "https://YOUR_SPACE_URL/"
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
**Response:**
|
| 64 |
+
```json
|
| 65 |
+
{
|
| 66 |
+
"status": "healthy",
|
| 67 |
+
"model": "MobileCLIP-S2",
|
| 68 |
+
"device": "cpu",
|
| 69 |
+
"onnx_optimized": true
|
| 70 |
+
}
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Model Info
|
| 74 |
+
|
| 75 |
+
```bash
|
| 76 |
+
curl "https://YOUR_SPACE_URL/info"
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
**Response:**
|
| 80 |
+
```json
|
| 81 |
+
{
|
| 82 |
+
"model": "MobileCLIP-S2",
|
| 83 |
+
"embedding_dim": 512,
|
| 84 |
+
"onnx_optimized": true,
|
| 85 |
+
"max_image_size_mb": 10,
|
| 86 |
+
"max_batch_size": 10,
|
| 87 |
+
"image_size": 256
|
| 88 |
+
}
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Model Details
|
| 92 |
+
|
| 93 |
+
- **Model**: MobileCLIP2-S2 (Apple)
|
| 94 |
+
- **Paper**: [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691)
|
| 95 |
+
- **Embedding Dimension**: 512
|
| 96 |
+
- **Input Size**: 256×256
|
| 97 |
+
- **Optimization**: ONNX Runtime CPU
|
| 98 |
+
- **Normalization**: L2 normalized outputs
|
| 99 |
+
|
| 100 |
+
## Local Development
|
| 101 |
+
|
| 102 |
+
### Prerequisites
|
| 103 |
+
|
| 104 |
+
- Python 3.11+
|
| 105 |
+
- Docker & Docker Compose (optional)
|
| 106 |
+
|
| 107 |
+
### Setup
|
| 108 |
+
|
| 109 |
+
1. **Install dependencies for model conversion:**
|
| 110 |
+
|
| 111 |
+
```bash
|
| 112 |
+
cd huggingface_embedder
|
| 113 |
+
pip install torch open_clip_torch ml-mobileclip
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
2. **Convert model to ONNX (one-time):**
|
| 117 |
+
|
| 118 |
+
```bash
|
| 119 |
+
python model_converter.py --output models
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
This will create:
|
| 123 |
+
- `models/mobileclip_s2_visual.onnx` (ONNX model)
|
| 124 |
+
- `models/preprocess_config.json` (preprocessing config)
|
| 125 |
+
|
| 126 |
+
3. **Install runtime dependencies:**
|
| 127 |
+
|
| 128 |
+
```bash
|
| 129 |
+
pip install -r requirements.txt
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
4. **Run locally:**
|
| 133 |
+
|
| 134 |
+
```bash
|
| 135 |
+
uvicorn embedder:app --reload --port 7860
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
5. **Test the API:**
|
| 139 |
+
|
| 140 |
+
```bash
|
| 141 |
+
# Health check
|
| 142 |
+
curl http://localhost:7860/
|
| 143 |
+
|
| 144 |
+
# Generate embedding
|
| 145 |
+
curl -X POST http://localhost:7860/embed \
|
| 146 |
+
-F "file=@test_image.jpg"
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
### Docker
|
| 150 |
+
|
| 151 |
+
```bash
|
| 152 |
+
# Build and run
|
| 153 |
+
docker compose up
|
| 154 |
+
|
| 155 |
+
# Test
|
| 156 |
+
curl -X POST http://localhost:8001/embed \
|
| 157 |
+
-F "file=@test_image.jpg"
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
## HuggingFace Spaces Deployment
|
| 161 |
+
|
| 162 |
+
### Initial Setup
|
| 163 |
+
|
| 164 |
+
1. **Create new Space:**
|
| 165 |
+
- Go to https://huggingface.co/spaces
|
| 166 |
+
- Click "Create new Space"
|
| 167 |
+
- Select **Docker** as SDK
|
| 168 |
+
- Set app_port to **7860**
|
| 169 |
+
|
| 170 |
+
2. **Add GitHub Secret:**
|
| 171 |
+
- Go to your GitHub repo Settings → Secrets
|
| 172 |
+
- Add `HUGGINGFACE_ACCESS_TOKEN` with your HF token
|
| 173 |
+
|
| 174 |
+
3. **Deploy:**
|
| 175 |
+
|
| 176 |
+
```bash
|
| 177 |
+
# Just push to main branch!
|
| 178 |
+
git push origin main
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
**That's it!** The model will be automatically downloaded from HuggingFace Hub (`apple/MobileCLIP-S2`) and converted to ONNX during the Docker build.
|
| 182 |
+
|
| 183 |
+
The Space will automatically build and deploy (takes 5-10 minutes for first build).
|
| 184 |
+
|
| 185 |
+
### Using GitHub Actions for Sync
|
| 186 |
+
|
| 187 |
+
See [Managing Spaces with GitHub Actions](https://huggingface.co/docs/hub/spaces-github-actions) for automatic sync from your GitHub repo.
|
| 188 |
+
|
| 189 |
+
## Performance
|
| 190 |
+
|
| 191 |
+
### Metrics (CPU: 2 cores, 2GB RAM)
|
| 192 |
+
|
| 193 |
+
- **Single Inference**: ~100-200ms
|
| 194 |
+
- **Batch (10 images)**: ~800-1200ms
|
| 195 |
+
- **Memory Usage**: <1.5GB
|
| 196 |
+
- **Throughput**: ~6-10 images/second
|
| 197 |
+
|
| 198 |
+
### Memory Optimization
|
| 199 |
+
|
| 200 |
+
The ONNX model uses ~50-70% less RAM compared to PyTorch:
|
| 201 |
+
|
| 202 |
+
- **PyTorch**: ~2.5GB RAM
|
| 203 |
+
- **ONNX (FP32)**: ~800MB RAM
|
| 204 |
+
- **ONNX (INT8)**: ~400MB RAM (use `--quantize` flag)
|
| 205 |
+
|
| 206 |
+
## Error Handling
|
| 207 |
+
|
| 208 |
+
| Status | Description |
|
| 209 |
+
|--------|-------------|
|
| 210 |
+
| 200 | Success |
|
| 211 |
+
| 400 | Invalid file type or format |
|
| 212 |
+
| 413 | File too large (>10MB) |
|
| 213 |
+
| 500 | Inference error |
|
| 214 |
+
|
| 215 |
+
## Limitations
|
| 216 |
+
|
| 217 |
+
- **Max image size**: 10MB per file
|
| 218 |
+
- **Max batch size**: 10 images per request
|
| 219 |
+
- **Supported formats**: JPEG, PNG, WebP
|
| 220 |
+
- **No GPU**: CPU-only inference (sufficient for most use cases)
|
| 221 |
+
|
| 222 |
+
## Integration Example
|
| 223 |
+
|
| 224 |
+
### Python
|
| 225 |
+
|
| 226 |
+
```python
|
| 227 |
+
import requests
|
| 228 |
+
|
| 229 |
+
# Single image
|
| 230 |
+
with open("photo.jpg", "rb") as f:
|
| 231 |
+
response = requests.post(
|
| 232 |
+
"https://YOUR_SPACE_URL/embed",
|
| 233 |
+
files={"file": f}
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
embedding = response.json()["embedding"]
|
| 237 |
+
print(f"Embedding shape: {len(embedding)}") # 512
|
| 238 |
+
```
|
| 239 |
+
|
| 240 |
+
### JavaScript
|
| 241 |
+
|
| 242 |
+
```javascript
|
| 243 |
+
const formData = new FormData();
|
| 244 |
+
formData.append('file', imageFile);
|
| 245 |
+
|
| 246 |
+
const response = await fetch('https://YOUR_SPACE_URL/embed', {
|
| 247 |
+
method: 'POST',
|
| 248 |
+
body: formData
|
| 249 |
+
});
|
| 250 |
+
|
| 251 |
+
const data = await response.json();
|
| 252 |
+
console.log('Embedding:', data.embedding);
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
## License
|
| 256 |
+
|
| 257 |
+
- **Code**: MIT License
|
| 258 |
+
- **Model**: [Apple AMLR License](https://huggingface.co/apple/MobileCLIP-S2)
|
| 259 |
+
|
| 260 |
+
## Citation
|
| 261 |
+
|
| 262 |
+
```bibtex
|
| 263 |
+
@article{mobileclip2,
|
| 264 |
+
title={MobileCLIP2: Improving Multi-Modal Reinforced Training},
|
| 265 |
+
author={Faghri, Fartash and Vasu, Pavan Kumar Anasosalu and Koc, Cem and Shankar, Vaishaal and Toshev, Alexander T and Tuzel, Oncel and Pouransari, Hadi},
|
| 266 |
+
journal={Transactions on Machine Learning Research},
|
| 267 |
+
year={2025}
|
| 268 |
+
}
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
## Support
|
| 272 |
+
|
| 273 |
+
For issues or questions:
|
| 274 |
+
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces
|
| 275 |
+
- Model: https://huggingface.co/apple/MobileCLIP-S2
|
| 276 |
+
- ONNX Runtime: https://onnxruntime.ai/
|
embedder.py
CHANGED
|
@@ -10,7 +10,7 @@ from fastapi import FastAPI, File, UploadFile, HTTPException, status
|
|
| 10 |
from fastapi.responses import JSONResponse
|
| 11 |
from PIL import Image
|
| 12 |
from pydantic import BaseModel, Field
|
| 13 |
-
from open_clip import create_model_and_transforms
|
| 14 |
from mobileclip.modules.common.mobileone import reparameterize_model
|
| 15 |
|
| 16 |
|
|
@@ -38,6 +38,19 @@ class BatchEmbeddingResponse(BaseModel):
|
|
| 38 |
model: str
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
class HealthResponse(BaseModel):
|
| 42 |
"""Health check response."""
|
| 43 |
status: str
|
|
@@ -304,6 +317,53 @@ async def generate_batch_embeddings(files: List[UploadFile] = File(...)):
|
|
| 304 |
)
|
| 305 |
|
| 306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
# --- Main ---
|
| 308 |
if __name__ == "__main__":
|
| 309 |
import uvicorn
|
|
|
|
| 10 |
from fastapi.responses import JSONResponse
|
| 11 |
from PIL import Image
|
| 12 |
from pydantic import BaseModel, Field
|
| 13 |
+
from open_clip import create_model_and_transforms, get_tokenizer
|
| 14 |
from mobileclip.modules.common.mobileone import reparameterize_model
|
| 15 |
|
| 16 |
|
|
|
|
| 38 |
model: str
|
| 39 |
|
| 40 |
|
| 41 |
+
class TextEmbeddingRequest(BaseModel):
|
| 42 |
+
"""Text embedding request."""
|
| 43 |
+
text: str = Field(..., min_length=1, max_length=1000)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class TextEmbeddingResponse(BaseModel):
|
| 47 |
+
"""Text embedding response."""
|
| 48 |
+
embedding: List[float] = Field(..., min_length=512, max_length=512)
|
| 49 |
+
model: str
|
| 50 |
+
inference_time_ms: float
|
| 51 |
+
text: str
|
| 52 |
+
|
| 53 |
+
|
| 54 |
class HealthResponse(BaseModel):
|
| 55 |
"""Health check response."""
|
| 56 |
status: str
|
|
|
|
| 317 |
)
|
| 318 |
|
| 319 |
|
| 320 |
+
@app.post("/embed/text", response_model=TextEmbeddingResponse)
|
| 321 |
+
async def generate_text_embedding(request: TextEmbeddingRequest):
|
| 322 |
+
"""
|
| 323 |
+
Generate embedding for text query.
|
| 324 |
+
|
| 325 |
+
Args:
|
| 326 |
+
request: Text to embed
|
| 327 |
+
|
| 328 |
+
Returns:
|
| 329 |
+
512-dimensional embedding for the text
|
| 330 |
+
|
| 331 |
+
Raises:
|
| 332 |
+
500: Inference error
|
| 333 |
+
"""
|
| 334 |
+
start_time = time.time()
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
# Tokenize text
|
| 338 |
+
tokenizer = get_tokenizer(MODEL_NAME)
|
| 339 |
+
text_tokens = tokenizer([request.text])
|
| 340 |
+
text_tokens = text_tokens.to(device)
|
| 341 |
+
|
| 342 |
+
# Run inference
|
| 343 |
+
with torch.no_grad():
|
| 344 |
+
text_embedding = model.encode_text(text_tokens)
|
| 345 |
+
text_embedding = normalize_embedding(text_embedding)
|
| 346 |
+
|
| 347 |
+
# Convert to numpy and then to list
|
| 348 |
+
embedding = text_embedding.cpu().numpy()[0]
|
| 349 |
+
|
| 350 |
+
# Calculate time
|
| 351 |
+
inference_time = (time.time() - start_time) * 1000
|
| 352 |
+
|
| 353 |
+
return TextEmbeddingResponse(
|
| 354 |
+
embedding=embedding.tolist(),
|
| 355 |
+
model=MODEL_NAME,
|
| 356 |
+
inference_time_ms=round(inference_time, 2),
|
| 357 |
+
text=request.text
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
except Exception as e:
|
| 361 |
+
raise HTTPException(
|
| 362 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 363 |
+
detail=f"Text inference failed: {str(e)}"
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
# --- Main ---
|
| 368 |
if __name__ == "__main__":
|
| 369 |
import uvicorn
|
requirements.txt
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
fastapi
|
| 2 |
-
uvicorn[standard]
|
| 3 |
-
python-multipart
|
| 4 |
-
pillow
|
| 5 |
-
numpy
|
| 6 |
-
pydantic
|
| 7 |
torch
|
| 8 |
open_clip_torch
|
| 9 |
ml-mobileclip @ git+https://github.com/apple/ml-mobileclip.git
|
|
|
|
| 1 |
+
fastapi==0.120.1
|
| 2 |
+
uvicorn[standard]==0.38.0
|
| 3 |
+
python-multipart==0.0.20
|
| 4 |
+
pillow==12.0.0
|
| 5 |
+
numpy==2.3.4
|
| 6 |
+
pydantic==2.12.3
|
| 7 |
torch
|
| 8 |
open_clip_torch
|
| 9 |
ml-mobileclip @ git+https://github.com/apple/ml-mobileclip.git
|