File size: 10,710 Bytes
3c7484f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from __future__ import annotations
from fastapi import FastAPI, UploadFile, File, Form, BackgroundTasks, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
import shutil
import uvicorn
import json
import uuid
from datetime import datetime
from typing import Dict
from enum import Enum
import os
from video_processing import process_video_pipeline
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
from narration_system import NarrationSystem
from llm_router import load_yaml, LLMRouter
from character_detection import detect_characters_from_video
app = FastAPI(title="Veureu Engine API", version="0.2.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
ROOT = Path("/tmp/veureu")
ROOT.mkdir(parents=True, exist_ok=True)
TEMP_ROOT = Path("/tmp/temp")
TEMP_ROOT.mkdir(parents=True, exist_ok=True)
VIDEOS_ROOT = Path("/tmp/data/videos")
VIDEOS_ROOT.mkdir(parents=True, exist_ok=True)
# Sistema de jobs asíncronos
class JobStatus(str, Enum):
QUEUED = "queued"
PROCESSING = "processing"
DONE = "done"
FAILED = "failed"
jobs: Dict[str, dict] = {}
@app.get("/")
def root():
return {"ok": True, "service": "veureu-engine"}
@app.post("/process_video")
async def process_video(
video_file: UploadFile = File(...),
config_path: str = Form("config.yaml"),
out_root: str = Form("results"),
db_dir: str = Form("chroma_db"),
):
tmp_video = ROOT / video_file.filename
with tmp_video.open("wb") as f:
shutil.copyfileobj(video_file.file, f)
result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir)
return JSONResponse(result)
@app.post("/create_initial_casting")
async def create_initial_casting(
background_tasks: BackgroundTasks,
video: UploadFile = File(...),
epsilon: float = Form(...),
min_cluster_size: int = Form(...),
):
"""
Crea un job para procesar el vídeo de forma asíncrona.
Devuelve un job_id inmediatamente.
"""
# Guardar vídeo en carpeta de datos
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
# Crear job_id único
job_id = str(uuid.uuid4())
# Inicializar el job
jobs[job_id] = {
"id": job_id,
"status": JobStatus.QUEUED,
"video_path": str(dst_video),
"video_name": video_name,
"epsilon": float(epsilon),
"min_cluster_size": int(min_cluster_size),
"created_at": datetime.now().isoformat(),
"results": None,
"error": None
}
print(f"[{job_id}] Job creado para vídeo: {video_name}")
# Iniciar procesamiento en background
background_tasks.add_task(process_video_job, job_id)
# Devolver job_id inmediatamente
return {"job_id": job_id}
@app.get("/jobs/{job_id}/status")
def get_job_status(job_id: str):
"""
Devuelve el estado actual de un job.
El UI hace polling de este endpoint cada 5 segundos.
"""
if job_id not in jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = jobs[job_id]
# Normalizar el estado a string
status_value = job["status"].value if isinstance(job["status"], JobStatus) else str(job["status"])
response = {"status": status_value}
# Incluir resultados si existen (evita condiciones de carrera)
if job.get("results") is not None:
response["results"] = job["results"]
# Incluir error si existe
if job.get("error"):
response["error"] = job["error"]
return response
@app.get("/files/{video_name}/{char_id}/{filename}")
def serve_character_file(video_name: str, char_id: str, filename: str):
"""
Sirve archivos estáticos de personajes (imágenes).
Ejemplo: /files/dif_catala_1/char1/representative.jpg
"""
file_path = TEMP_ROOT / video_name / char_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
def process_video_job(job_id: str):
"""
Procesa el vídeo de forma asíncrona.
Esta función se ejecuta en background.
"""
try:
job = jobs[job_id]
print(f"[{job_id}] Iniciando procesamiento...")
# Cambiar estado a processing
job["status"] = JobStatus.PROCESSING
video_path = job["video_path"]
video_name = job["video_name"]
epsilon = job["epsilon"]
min_cluster_size = job["min_cluster_size"]
# Crear estructura de carpetas
base = TEMP_ROOT / video_name
base.mkdir(parents=True, exist_ok=True)
print(f"[{job_id}] Directorio base: {base}")
# Detección real de personajes usando el código de Ana
try:
print(f"[{job_id}] Iniciando detección de personajes...")
result = detect_characters_from_video(
video_path=video_path,
output_base=str(base),
epsilon=epsilon,
min_cluster_size=min_cluster_size,
video_name=video_name
)
print(f"[{job_id}] DEBUG - result completo: {result}")
characters = result.get("characters", [])
analysis_path = result.get("analysis_path", "")
print(f"[{job_id}] Personajes detectados: {len(characters)}")
for char in characters:
print(f"[{job_id}] - {char['name']}: {char['num_faces']} caras")
# Guardar resultados primero y luego marcar como completado (evita carreras)
job["results"] = {
"characters": characters,
"num_characters": len(characters),
"analysis_path": analysis_path,
"base_dir": str(base)
}
job["status"] = JobStatus.DONE
print(f"[{job_id}] DEBUG - job['results'] guardado: {job['results']}")
except Exception as e_detect:
# Si falla la detección, intentar modo fallback
import traceback
print(f"[{job_id}] ✗ Error en detección: {e_detect}")
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
print(f"[{job_id}] Usando modo fallback (carpetas vacías)")
# Crear carpetas básicas como fallback
for sub in ("sources", "faces", "voices", "backgrounds"):
(base / sub).mkdir(parents=True, exist_ok=True)
# Guardar resultados de fallback y luego marcar como completado
job["results"] = {
"characters": [],
"num_characters": 0,
"temp_dirs": {
"sources": str(base / "sources"),
"faces": str(base / "faces"),
"voices": str(base / "voices"),
"backgrounds": str(base / "backgrounds"),
},
"warning": f"Detección falló, usando modo fallback: {str(e_detect)}"
}
job["status"] = JobStatus.DONE
print(f"[{job_id}] ✓ Job completado exitosamente")
except Exception as e:
print(f"[{job_id}] ✗ Error en el procesamiento: {e}")
jobs[job_id]["status"] = JobStatus.FAILED
jobs[job_id]["error"] = str(e)
@app.post("/load_casting")
async def load_casting(
faces_dir: str = Form("identities/faces"),
voices_dir: str = Form("identities/voices"),
db_dir: str = Form("chroma_db"),
drop_collections: bool = Form(False),
):
client = ensure_chroma(Path(db_dir))
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
return {"ok": True, "faces": n_faces, "voices": n_voices}
@app.post("/refine_narration")
async def refine_narration(
dialogues_srt: str = Form(...),
frame_descriptions_json: str = Form("[]"),
config_path: str = Form("config.yaml"),
):
cfg = load_yaml(config_path)
frames = json.loads(frame_descriptions_json)
model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))
if use_remote:
router = LLMRouter(cfg)
system_msg = (
"Eres un sistema de audiodescripción que cumple UNE-153010. "
"Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
"Devuelve JSON con {narrative_text, srt_text}."
)
prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
try:
txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
out = {}
try:
out = json.loads(txt)
except Exception:
out = {"narrative_text": txt, "srt_text": ""}
return {
"narrative_text": out.get("narrative_text", ""),
"srt_text": out.get("srt_text", ""),
"approved": True,
"critic_feedback": "",
}
except Exception:
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt"))
res = ns.run(dialogues_srt, frames)
return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
out = ns.run(dialogues_srt, frames)
return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|