from __future__ import annotations from fastapi import FastAPI, UploadFile, File, Form, BackgroundTasks, HTTPException from fastapi.responses import JSONResponse, FileResponse from fastapi.middleware.cors import CORSMiddleware from pathlib import Path import shutil import uvicorn import json import uuid from datetime import datetime from typing import Dict from enum import Enum import os from video_processing import process_video_pipeline from casting_loader import ensure_chroma, build_faces_index, build_voices_index from narration_system import NarrationSystem from llm_router import load_yaml, LLMRouter from character_detection import detect_characters_from_video app = FastAPI(title="Veureu Engine API", version="0.2.0") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) ROOT = Path("/tmp/veureu") ROOT.mkdir(parents=True, exist_ok=True) TEMP_ROOT = Path("/tmp/temp") TEMP_ROOT.mkdir(parents=True, exist_ok=True) VIDEOS_ROOT = Path("/tmp/data/videos") VIDEOS_ROOT.mkdir(parents=True, exist_ok=True) # Sistema de jobs asíncronos class JobStatus(str, Enum): QUEUED = "queued" PROCESSING = "processing" DONE = "done" FAILED = "failed" jobs: Dict[str, dict] = {} @app.get("/") def root(): return {"ok": True, "service": "veureu-engine"} @app.post("/process_video") async def process_video( video_file: UploadFile = File(...), config_path: str = Form("config.yaml"), out_root: str = Form("results"), db_dir: str = Form("chroma_db"), ): tmp_video = ROOT / video_file.filename with tmp_video.open("wb") as f: shutil.copyfileobj(video_file.file, f) result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir) return JSONResponse(result) @app.post("/create_initial_casting") async def create_initial_casting( background_tasks: BackgroundTasks, video: UploadFile = File(...), epsilon: float = Form(...), min_cluster_size: int = Form(...), ): """ Crea un job para procesar el vídeo de forma asíncrona. Devuelve un job_id inmediatamente. """ # Guardar vídeo en carpeta de datos video_name = Path(video.filename).stem dst_video = VIDEOS_ROOT / f"{video_name}.mp4" with dst_video.open("wb") as f: shutil.copyfileobj(video.file, f) # Crear job_id único job_id = str(uuid.uuid4()) # Inicializar el job jobs[job_id] = { "id": job_id, "status": JobStatus.QUEUED, "video_path": str(dst_video), "video_name": video_name, "epsilon": float(epsilon), "min_cluster_size": int(min_cluster_size), "created_at": datetime.now().isoformat(), "results": None, "error": None } print(f"[{job_id}] Job creado para vídeo: {video_name}") # Iniciar procesamiento en background background_tasks.add_task(process_video_job, job_id) # Devolver job_id inmediatamente return {"job_id": job_id} @app.get("/jobs/{job_id}/status") def get_job_status(job_id: str): """ Devuelve el estado actual de un job. El UI hace polling de este endpoint cada 5 segundos. """ if job_id not in jobs: raise HTTPException(status_code=404, detail="Job not found") job = jobs[job_id] # Normalizar el estado a string status_value = job["status"].value if isinstance(job["status"], JobStatus) else str(job["status"]) response = {"status": status_value} # Incluir resultados si existen (evita condiciones de carrera) if job.get("results") is not None: response["results"] = job["results"] # Incluir error si existe if job.get("error"): response["error"] = job["error"] return response @app.get("/files/{video_name}/{char_id}/{filename}") def serve_character_file(video_name: str, char_id: str, filename: str): """ Sirve archivos estáticos de personajes (imágenes). Ejemplo: /files/dif_catala_1/char1/representative.jpg """ file_path = TEMP_ROOT / video_name / char_id / filename if not file_path.exists(): raise HTTPException(status_code=404, detail="File not found") return FileResponse(file_path) def process_video_job(job_id: str): """ Procesa el vídeo de forma asíncrona. Esta función se ejecuta en background. """ try: job = jobs[job_id] print(f"[{job_id}] Iniciando procesamiento...") # Cambiar estado a processing job["status"] = JobStatus.PROCESSING video_path = job["video_path"] video_name = job["video_name"] epsilon = job["epsilon"] min_cluster_size = job["min_cluster_size"] # Crear estructura de carpetas base = TEMP_ROOT / video_name base.mkdir(parents=True, exist_ok=True) print(f"[{job_id}] Directorio base: {base}") # Detección real de personajes usando el código de Ana try: print(f"[{job_id}] Iniciando detección de personajes...") result = detect_characters_from_video( video_path=video_path, output_base=str(base), epsilon=epsilon, min_cluster_size=min_cluster_size, video_name=video_name ) print(f"[{job_id}] DEBUG - result completo: {result}") characters = result.get("characters", []) analysis_path = result.get("analysis_path", "") print(f"[{job_id}] Personajes detectados: {len(characters)}") for char in characters: print(f"[{job_id}] - {char['name']}: {char['num_faces']} caras") # Guardar resultados primero y luego marcar como completado (evita carreras) job["results"] = { "characters": characters, "num_characters": len(characters), "analysis_path": analysis_path, "base_dir": str(base) } job["status"] = JobStatus.DONE print(f"[{job_id}] DEBUG - job['results'] guardado: {job['results']}") except Exception as e_detect: # Si falla la detección, intentar modo fallback import traceback print(f"[{job_id}] ✗ Error en detección: {e_detect}") print(f"[{job_id}] Traceback: {traceback.format_exc()}") print(f"[{job_id}] Usando modo fallback (carpetas vacías)") # Crear carpetas básicas como fallback for sub in ("sources", "faces", "voices", "backgrounds"): (base / sub).mkdir(parents=True, exist_ok=True) # Guardar resultados de fallback y luego marcar como completado job["results"] = { "characters": [], "num_characters": 0, "temp_dirs": { "sources": str(base / "sources"), "faces": str(base / "faces"), "voices": str(base / "voices"), "backgrounds": str(base / "backgrounds"), }, "warning": f"Detección falló, usando modo fallback: {str(e_detect)}" } job["status"] = JobStatus.DONE print(f"[{job_id}] ✓ Job completado exitosamente") except Exception as e: print(f"[{job_id}] ✗ Error en el procesamiento: {e}") jobs[job_id]["status"] = JobStatus.FAILED jobs[job_id]["error"] = str(e) @app.post("/load_casting") async def load_casting( faces_dir: str = Form("identities/faces"), voices_dir: str = Form("identities/voices"), db_dir: str = Form("chroma_db"), drop_collections: bool = Form(False), ): client = ensure_chroma(Path(db_dir)) n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections) n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections) return {"ok": True, "faces": n_faces, "voices": n_voices} @app.post("/refine_narration") async def refine_narration( dialogues_srt: str = Form(...), frame_descriptions_json: str = Form("[]"), config_path: str = Form("config.yaml"), ): cfg = load_yaml(config_path) frames = json.loads(frame_descriptions_json) model_name = cfg.get("narration", {}).get("model", "salamandra-instruct") use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", [])) if use_remote: router = LLMRouter(cfg) system_msg = ( "Eres un sistema de audiodescripción que cumple UNE-153010. " "Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. " "Devuelve JSON con {narrative_text, srt_text}." ) prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False) try: txt = router.instruct(prompt=prompt, system=system_msg, model=model_name) out = {} try: out = json.loads(txt) except Exception: out = {"narrative_text": txt, "srt_text": ""} return { "narrative_text": out.get("narrative_text", ""), "srt_text": out.get("srt_text", ""), "approved": True, "critic_feedback": "", } except Exception: ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt")) res = ns.run(dialogues_srt, frames) return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback} ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt")) out = ns.run(dialogues_srt, frames) return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)