File size: 12,028 Bytes
ac342d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# api_client.py (UI - Space "veureu")
import os
import io
import base64
import zipfile
import requests
from typing import Iterable, Dict, Any
class APIClient:
"""
High-level client for communicating with the Veureu Engine API.
Endpoints managed:
POST /jobs
→ {"job_id": "..."}
GET /jobs/{job_id}/status
→ {"status": "queued|processing|done|failed", ...}
GET /jobs/{job_id}/result
→ JobResult such as {"book": {...}, "une": {...}, ...}
This class is used by the Streamlit UI to submit videos, poll job status,
retrieve results, generate audio, and interact with the TTS and casting services.
"""
def __init__(
self,
base_url: str,
use_mock: bool = False,
data_dir: str | None = None,
token: str | None = None,
timeout: int = 180
):
"""
Initialize the API client.
Args:
base_url: Base URL of the engine or TTS service.
use_mock: Whether to respond with mock data instead of real API calls.
data_dir: Optional data folder for local mock/test files.
token: Authentication token (fallback: API_SHARED_TOKEN env var).
timeout: Timeout in seconds for requests.
"""
self.base_url = base_url.rstrip("/")
self.tts_url = self.base_url # For HF Spaces, TTS lives at same base URL
self.use_mock = use_mock
self.data_dir = data_dir
self.timeout = timeout
self.session = requests.Session()
# Authorization header if token provided
token = token or os.getenv("API_SHARED_TOKEN")
if token:
self.session.headers.update({"Authorization": f"Bearer {token}"})
# -------------------------------------------------------------------------
# Internal engine calls
# -------------------------------------------------------------------------
def _post_jobs(self, video_path: str, modes: Iterable[str]) -> Dict[str, Any]:
"""Submit a video and processing modes to /jobs."""
url = f"{self.base_url}/jobs"
files = {
"file": (os.path.basename(video_path), open(video_path, "rb"), "application/octet-stream")
}
data = {"modes": ",".join(modes)}
r = self.session.post(url, files=files, data=data, timeout=self.timeout)
r.raise_for_status()
return r.json()
def _get_status(self, job_id: str) -> Dict[str, Any]:
"""Query job status."""
url = f"{self.base_url}/jobs/{job_id}/status"
r = self.session.get(url, timeout=self.timeout)
r.raise_for_status()
return r.json()
def _get_result(self, job_id: str) -> Dict[str, Any]:
"""Retrieve job result."""
url = f"{self.base_url}/jobs/{job_id}/result"
r = self.session.get(url, timeout=self.timeout)
r.raise_for_status()
return r.json()
# -------------------------------------------------------------------------
# Public API used by streamlit_app.py
# -------------------------------------------------------------------------
def process_video(self, video_path: str, modes: Iterable[str]) -> Dict[str, Any]:
"""Return {"job_id": "..."} either from mock or engine."""
if self.use_mock:
return {"job_id": "mock-123"}
return self._post_jobs(video_path, modes)
def get_job(self, job_id: str) -> Dict[str, Any]:
"""
Returns UI-friendly job data:
{"status": "done", "results": {"book": {...}, "une": {...}}}
Maps engine responses into the expected 'results' format.
"""
if self.use_mock:
return {
"status": "done",
"results": {
"book": {"text": "Example text (book)", "mp3_bytes": b""},
"une": {
"srt": "1\n00:00:00,000 --> 00:00:01,000\nExample UNE\n",
"mp3_bytes": b""
}
}
}
status_data = self._get_status(job_id)
# If still processing, return minimal structure
if status_data.get("status") in {"queued", "processing"}:
return {"status": status_data.get("status", "queued")}
raw_result = self._get_result(job_id)
results = {}
# Direct mapping of book/une sections
if "book" in raw_result:
results["book"] = {"text": raw_result["book"].get("text")}
if "une" in raw_result:
results["une"] = {"srt": raw_result["une"].get("srt")}
# Preserve characters/metrics if present
for section in ("book", "une"):
if section in raw_result:
if "characters" in raw_result[section]:
results[section]["characters"] = raw_result[section]["characters"]
if "metrics" in raw_result[section]:
results[section]["metrics"] = raw_result[section]["metrics"]
final_status = "done" if results else status_data.get("status", "unknown")
return {"status": final_status, "results": results}
# -------------------------------------------------------------------------
# TTS Services
# -------------------------------------------------------------------------
def tts_matxa(self, text: str, voice: str = "central/grau") -> dict:
"""
Call the TTS /tts/text endpoint to synthesize short audio.
Returns:
{"mp3_bytes": b"..."} on success
{"error": "..."} on failure
"""
if not self.tts_url:
raise ValueError("TTS service URL not configured.")
url = f"{self.tts_url.rstrip('/')}/tts/text"
data = {"texto": text, "voice": voice, "formato": "mp3"}
try:
r = requests.post(url, data=data, timeout=self.timeout)
r.raise_for_status()
return {"mp3_bytes": r.content}
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def rebuild_video_with_ad(self, video_path: str, srt_path: str) -> dict:
"""
Rebuild a video including audio description (AD)
by calling /tts/srt. The server returns a ZIP containing an MP4.
"""
if not self.tts_url:
raise ValueError("TTS service URL not configured.")
url = f"{self.tts_url.rstrip('/')}/tts/srt"
try:
files = {
"video": (os.path.basename(video_path), open(video_path, "rb"), "video/mp4"),
"srt": (os.path.basename(srt_path), open(srt_path, "rb"), "application/x-subrip")
}
data = {"include_final_mp4": 1}
r = requests.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
for name in z.namelist():
if name.endswith(".mp4"):
return {"video_bytes": z.read(name)}
return {"error": "MP4 file not found inside ZIP."}
except zipfile.BadZipFile:
return {"error": "Invalid ZIP response from server."}
except requests.exceptions.RequestException as e:
return {"error": str(e)}
# -------------------------------------------------------------------------
# Engine casting services
# -------------------------------------------------------------------------
def create_initial_casting(
self,
video_path: str = None,
video_bytes: bytes = None,
video_name: str = None,
epsilon: float = 0.5,
min_cluster_size: int = 2
) -> dict:
"""
Calls /create_initial_casting to produce the initial actor/face clustering.
Args:
video_path: Load video from disk.
video_bytes: Provide video already in memory.
video_name: Name used if video_bytes is provided.
epsilon: DBSCAN epsilon for clustering.
min_cluster_size: Minimum number of samples for DBSCAN.
"""
url = f"{self.base_url}/create_initial_casting"
try:
# Prepare video input
if video_bytes:
files = {"video": (video_name or "video.mp4", video_bytes, "video/mp4")}
elif video_path:
with open(video_path, "rb") as f:
files = {"video": (os.path.basename(video_path), f.read(), "video/mp4")}
else:
return {"error": "Either video_path or video_bytes must be provided."}
data = {
"epsilon": str(epsilon),
"min_cluster_size": str(min_cluster_size)
}
r = self.session.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
if r.headers.get("content-type", "").startswith("application/json"):
return r.json()
return {"ok": True}
except Exception as e:
return {"error": str(e)}
# -------------------------------------------------------------------------
# Long text TTS helpers
# -------------------------------------------------------------------------
def generate_audio_from_text_file(self, text_content: str, voice: str = "central/grau") -> dict:
"""
Converts a large text into an SRT-like structure, calls /tts/srt,
and extracts 'ad_master.mp3' from the resulting ZIP.
Useful for audiobook-like generation.
"""
if not self.tts_url:
raise ValueError("TTS service URL not configured.")
# Build synthetic SRT in memory
srt_content = ""
start = 0
for idx, raw_line in enumerate(text_content.strip().split("\n")):
line = raw_line.strip()
if not line:
continue
end = start + 5 # simplistic 5 seconds per subtitle
def fmt(seconds):
h = seconds // 3600
m = (seconds % 3600) // 60
s = seconds % 60
return f"{h:02d}:{m:02d}:{s:02d},000"
srt_content += f"{idx+1}\n"
srt_content += f"{fmt(start)} --> {fmt(end)}\n"
srt_content += f"{line}\n\n"
start = end
if not srt_content:
return {"error": "Provided text is empty or cannot be processed."}
# Call server
url = f"{self.tts_url.rstrip('/')}/tts/srt"
try:
files = {"srt": ("fake_ad.srt", srt_content, "application/x-subrip")}
data = {"voice": voice, "ad_format": "mp3"}
r = requests.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
if "ad_master.mp3" in z.namelist():
return {"mp3_bytes": z.read("ad_master.mp3")}
return {"error": "'ad_master.mp3' not found inside ZIP."}
except requests.exceptions.RequestException as e:
return {"error": f"Error calling SRT API: {e}"}
except zipfile.BadZipFile:
return {"error": "Invalid ZIP response from server."}
def tts_long_text(self, text: str, voice: str = "central/grau") -> dict:
"""
Call /tts/text_long for very long text TTS synthesis.
Returns raw MP3 bytes.
"""
if not self.tts_url:
raise ValueError("TTS service URL not configured.")
url = f"{self.tts_url.rstrip('/')}/tts/text_long"
data = {"texto": text, "voice": voice, "formato": "mp3"}
try:
r = requests.post(url, data=data, timeout=self.timeout * 10)
r.raise_for_status()
return {"mp3_bytes": r.content}
except requests.exceptions.RequestException as e:
return {"error": str(e)}
|