File size: 4,130 Bytes
287f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from __future__ import annotations
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
import shutil
import uvicorn
import json

from video_processing import process_video_pipeline
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
from narration_system import NarrationSystem
from llm_router import load_yaml, LLMRouter

app = FastAPI(title="Veureu Engine API", version="0.2.0")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

ROOT = Path("/tmp/veureu")
ROOT.mkdir(parents=True, exist_ok=True)

@app.get("/")
def root():
    return {"ok": True, "service": "veureu-engine"}

@app.post("/process_video")
async def process_video(

    video_file: UploadFile = File(...),

    config_path: str = Form("config.yaml"),

    out_root: str = Form("results"),

    db_dir: str = Form("chroma_db"),

):
    tmp_video = ROOT / video_file.filename
    with tmp_video.open("wb") as f:
        shutil.copyfileobj(video_file.file, f)
    result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir)
    return JSONResponse(result)

@app.post("/load_casting")
async def load_casting(

    faces_dir: str = Form("identities/faces"),

    voices_dir: str = Form("identities/voices"),

    db_dir: str = Form("chroma_db"),

    drop_collections: bool = Form(False),

):
    client = ensure_chroma(Path(db_dir))
    n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
    n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
    return {"ok": True, "faces": n_faces, "voices": n_voices}

@app.post("/refine_narration")
async def refine_narration(

    dialogues_srt: str = Form(...),

    frame_descriptions_json: str = Form("[]"),

    config_path: str = Form("config.yaml"),

):
    cfg = load_yaml(config_path)
    frames = json.loads(frame_descriptions_json)
    model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
    use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))

    if use_remote:
        router = LLMRouter(cfg)
        system_msg = (
            "Eres un sistema de audiodescripción que cumple UNE-153010. "
            "Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
            "Devuelve JSON con {narrative_text, srt_text}."
        )
        prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
        try:
            txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
            out = {}
            try:
                out = json.loads(txt)
            except Exception:
                out = {"narrative_text": txt, "srt_text": ""}
            return {
                "narrative_text": out.get("narrative_text", ""),
                "srt_text": out.get("srt_text", ""),
                "approved": True,
                "critic_feedback": "",
            }
        except Exception:
            ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt"))
            res = ns.run(dialogues_srt, frames)
            return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}

    ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
    out = ns.run(dialogues_srt, frames)
    return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)